Indoor navigation using Wi-Fi fingerprinting combined with pedestrian dead reckoning

Shan Jung Yu, Shau Shiun Jan, David S. De Lorenzo

研究成果: Conference contribution

7 引文 斯高帕斯(Scopus)

摘要

This paper presents a method by which to calibrate the Wi-Fi fingerprinting database with less effort using smartphone based Pedestrian Dead Reckoning (PDR) without any a-priori knowledge. Because the accumulated errors from PDR will decrease the quality of the database, we employ a quaternion based orientation extended Kalman filter (EKF) to deal with the pedestrian heading and to narrow down the PDR positioning error to 2.2 meters for a 270 meter path. Furthermore, we implement the Walkie-Markie method to enhance the accuracy of the PDR step positions used to replace the reference points (RPs) built into the Wi-Fi fingerprinting database. The method defines the Wi-Fi landmarks according to the trend of the Receive Signal Strength (RSS) collected by PDR and converges the pathway map using the Wi-Fi Marks (WMs). In a simulation scenario, the WMs and PDR pathway errors is nearly 0 meters.

原文English
主出版物標題2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面246-253
頁數8
ISBN(電子)9781538616475
DOIs
出版狀態Published - 2018 六月 5
事件2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018 - Monterey, United States
持續時間: 2018 四月 232018 四月 26

出版系列

名字2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018 - Proceedings

Other

Other2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018
國家/地區United States
城市Monterey
期間18-04-2318-04-26

All Science Journal Classification (ASJC) codes

  • 汽車工程
  • 航空工程
  • 控制和優化

指紋

深入研究「Indoor navigation using Wi-Fi fingerprinting combined with pedestrian dead reckoning」主題。共同形成了獨特的指紋。

引用此