Induction of Pyruvate Dehydrogenase Kinase 1 by Hypoxia Alters Cellular Metabolism and Inhibits Apoptosis in Endometriotic Stromal Cells

研究成果: Article

1 引文 (Scopus)

摘要

Endometriosis is a common gynecological disease, which is defined as the growth of endometrial tissues outside the uterine cavity. It often causes dysmenorrhea, dyspareunia, chronic pelvic pain, and infertility in reproductive-age women. However, the pathogenesis of endometriosis remains largely unclear. Since our previous study revealed that ectopic endometriotic stromal cells experience greater hypoxic stress than their eutopic counterparts, we aim to investigate whether the metabolic properties are changed in the ectopic endometriotic stromal cell when compared to its eutopic counterpart. Here, we found the expression of pyruvate dehydrogenase kinase 1 (PDK1), a critical enzyme in regulating glucose metabolism, was increased in ectopic stromal cells. Molecular characterization reveals that overexpression of PDK1 is induced by hypoxia through transcriptional regulation. Upregulation of PDK1 in ectopic endometriotic stromal cells was accompanied by increases in lactate production and oxygen consumption rate when compared to eutopic endometrial stromal cells. Furthermore, our data showed that inhibition of PDK1 activity by treatment with dichloroacetate inhibits the lactate production and oxygen consumption rate of ectopic stromal cells. In addition, hypoxia-induced PDK1 expression prevented cells from H2O2- and low nutrient-induced cell death. These data indicate that ectopic endometriotic cells may adapt to hypoxic microenvironment via upregulating PDK1 and reprogramming metabolism, which provides a survival advantage in the hostile peritoneal microenvironment.

原文English
頁(從 - 到)734-744
頁數11
期刊Reproductive Sciences
26
發行號6
DOIs
出版狀態Published - 2019 六月 1

指紋

Cell Hypoxia
Stromal Cells
Apoptosis
Endometriosis
Oxygen Consumption
Lactic Acid
Dyspareunia
Dysmenorrhea
Pelvic Pain
Chronic Pain
Infertility
pyruvate dehydrogenase (acetyl-transferring) kinase
Cell Death
Up-Regulation
Glucose
Food
Survival
Enzymes
Growth

All Science Journal Classification (ASJC) codes

  • Obstetrics and Gynaecology

引用此文

@article{d670c3a550b64528bd340cb1f5669828,
title = "Induction of Pyruvate Dehydrogenase Kinase 1 by Hypoxia Alters Cellular Metabolism and Inhibits Apoptosis in Endometriotic Stromal Cells",
abstract = "Endometriosis is a common gynecological disease, which is defined as the growth of endometrial tissues outside the uterine cavity. It often causes dysmenorrhea, dyspareunia, chronic pelvic pain, and infertility in reproductive-age women. However, the pathogenesis of endometriosis remains largely unclear. Since our previous study revealed that ectopic endometriotic stromal cells experience greater hypoxic stress than their eutopic counterparts, we aim to investigate whether the metabolic properties are changed in the ectopic endometriotic stromal cell when compared to its eutopic counterpart. Here, we found the expression of pyruvate dehydrogenase kinase 1 (PDK1), a critical enzyme in regulating glucose metabolism, was increased in ectopic stromal cells. Molecular characterization reveals that overexpression of PDK1 is induced by hypoxia through transcriptional regulation. Upregulation of PDK1 in ectopic endometriotic stromal cells was accompanied by increases in lactate production and oxygen consumption rate when compared to eutopic endometrial stromal cells. Furthermore, our data showed that inhibition of PDK1 activity by treatment with dichloroacetate inhibits the lactate production and oxygen consumption rate of ectopic stromal cells. In addition, hypoxia-induced PDK1 expression prevented cells from H2O2- and low nutrient-induced cell death. These data indicate that ectopic endometriotic cells may adapt to hypoxic microenvironment via upregulating PDK1 and reprogramming metabolism, which provides a survival advantage in the hostile peritoneal microenvironment.",
author = "Lee, {Hsiu Chi} and Shih-Chieh Lin and Meng-Hsing Wu and Shaw-Jenq Tsai",
year = "2019",
month = "6",
day = "1",
doi = "10.1177/1933719118789513",
language = "English",
volume = "26",
pages = "734--744",
journal = "Reproductive Sciences",
issn = "1933-7191",
publisher = "SAGE Publications Inc.",
number = "6",

}

TY - JOUR

T1 - Induction of Pyruvate Dehydrogenase Kinase 1 by Hypoxia Alters Cellular Metabolism and Inhibits Apoptosis in Endometriotic Stromal Cells

AU - Lee, Hsiu Chi

AU - Lin, Shih-Chieh

AU - Wu, Meng-Hsing

AU - Tsai, Shaw-Jenq

PY - 2019/6/1

Y1 - 2019/6/1

N2 - Endometriosis is a common gynecological disease, which is defined as the growth of endometrial tissues outside the uterine cavity. It often causes dysmenorrhea, dyspareunia, chronic pelvic pain, and infertility in reproductive-age women. However, the pathogenesis of endometriosis remains largely unclear. Since our previous study revealed that ectopic endometriotic stromal cells experience greater hypoxic stress than their eutopic counterparts, we aim to investigate whether the metabolic properties are changed in the ectopic endometriotic stromal cell when compared to its eutopic counterpart. Here, we found the expression of pyruvate dehydrogenase kinase 1 (PDK1), a critical enzyme in regulating glucose metabolism, was increased in ectopic stromal cells. Molecular characterization reveals that overexpression of PDK1 is induced by hypoxia through transcriptional regulation. Upregulation of PDK1 in ectopic endometriotic stromal cells was accompanied by increases in lactate production and oxygen consumption rate when compared to eutopic endometrial stromal cells. Furthermore, our data showed that inhibition of PDK1 activity by treatment with dichloroacetate inhibits the lactate production and oxygen consumption rate of ectopic stromal cells. In addition, hypoxia-induced PDK1 expression prevented cells from H2O2- and low nutrient-induced cell death. These data indicate that ectopic endometriotic cells may adapt to hypoxic microenvironment via upregulating PDK1 and reprogramming metabolism, which provides a survival advantage in the hostile peritoneal microenvironment.

AB - Endometriosis is a common gynecological disease, which is defined as the growth of endometrial tissues outside the uterine cavity. It often causes dysmenorrhea, dyspareunia, chronic pelvic pain, and infertility in reproductive-age women. However, the pathogenesis of endometriosis remains largely unclear. Since our previous study revealed that ectopic endometriotic stromal cells experience greater hypoxic stress than their eutopic counterparts, we aim to investigate whether the metabolic properties are changed in the ectopic endometriotic stromal cell when compared to its eutopic counterpart. Here, we found the expression of pyruvate dehydrogenase kinase 1 (PDK1), a critical enzyme in regulating glucose metabolism, was increased in ectopic stromal cells. Molecular characterization reveals that overexpression of PDK1 is induced by hypoxia through transcriptional regulation. Upregulation of PDK1 in ectopic endometriotic stromal cells was accompanied by increases in lactate production and oxygen consumption rate when compared to eutopic endometrial stromal cells. Furthermore, our data showed that inhibition of PDK1 activity by treatment with dichloroacetate inhibits the lactate production and oxygen consumption rate of ectopic stromal cells. In addition, hypoxia-induced PDK1 expression prevented cells from H2O2- and low nutrient-induced cell death. These data indicate that ectopic endometriotic cells may adapt to hypoxic microenvironment via upregulating PDK1 and reprogramming metabolism, which provides a survival advantage in the hostile peritoneal microenvironment.

UR - http://www.scopus.com/inward/record.url?scp=85052553825&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052553825&partnerID=8YFLogxK

U2 - 10.1177/1933719118789513

DO - 10.1177/1933719118789513

M3 - Article

AN - SCOPUS:85052553825

VL - 26

SP - 734

EP - 744

JO - Reproductive Sciences

JF - Reproductive Sciences

SN - 1933-7191

IS - 6

ER -