Influence of altered torsional stiffness through sole modification of air pressure shoes on lower extremity biomechanical behaviour during side-step cutting maneuvers

Md Samsul Arefin, Hsiao Feng Chieh, Chien Ju Lin, Cheng Feng Lin, Fong Chin Su

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

Directional changes in cutting maneuvers are critical in sports, where shoe torsional stiffness (STS) is an important factor. Shoes are designed based on different constructions and movement patterns. Hence, it is unclear how adjustable spacers into the sole constructions of air pressure chambers (APC) affect the STS in side-step cutting. Therefore, this study investigated the effects of altered STS through adjustable sole spacers on ground reaction force (GRF) and ankle and knee joint moments in side-step cutting. Seventeen healthy recreational athletes performed side-step cutting with experimental conditions including (i) barefoot (BF), (ii) unaltered shoes (UAS): soles consisting of APC, and (iii) altered shoes (AS): modified UAS by inserting elastomeric spacers into cavities formed by APC. Mechanical and biomechanical variables were measured. Significant differences were revealed across shoe conditions for impact peak (p = 0.009) and impulse (p = 0.018) in vertical GRF, time to achieve peak braking (p = 0.004), and peak propulsion (p = 0.025) for anterior-posterior GRF in ANOVA test. No significant differences were observed in GRF peaks and impulses between UAS and AS except for a trend of differences in impact peak (p = 0.087) for vertical GRF. At the ankle and knee joint, peak ankle power absorption (p = 0.019), peak knee internal rotation moment (p = 0.042), peak knee extension moment (p = 0.001), peak knee flexion moment (0.000), peak knee power absorption (p = 0.047) showed significant difference across three shoe conditions. However, no significant differences between the UAS and AS were noticed for peak joint moments and power. Altered shoe torsional stiffness did not significantly affect the peak forces and peak ankle and knee joint moments or powers; hence sole adjustment did not influence the cutting performance. This study might be insightful in sports footwear design, and adjusting shoe torsional stiffness by sole modification might be advantageous for athletes playing sports with cutting maneuvers to reduce the risk of injuries by controlling the twisting force at the ankle that frequently happens during cutting maneuvers.

原文English
文章編號e0297592
期刊PloS one
19
發行號2 February
DOIs
出版狀態Published - 2024 2月

All Science Journal Classification (ASJC) codes

  • 多學科

指紋

深入研究「Influence of altered torsional stiffness through sole modification of air pressure shoes on lower extremity biomechanical behaviour during side-step cutting maneuvers」主題。共同形成了獨特的指紋。

引用此