TY - JOUR
T1 - Influence of altered torsional stiffness through sole modification of air pressure shoes on lower extremity biomechanical behaviour during side-step cutting maneuvers
AU - Arefin, Md Samsul
AU - Chieh, Hsiao Feng
AU - Lin, Chien Ju
AU - Lin, Cheng Feng
AU - Su, Fong Chin
N1 - Publisher Copyright:
© 2024 Arefin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/2
Y1 - 2024/2
N2 - Directional changes in cutting maneuvers are critical in sports, where shoe torsional stiffness (STS) is an important factor. Shoes are designed based on different constructions and movement patterns. Hence, it is unclear how adjustable spacers into the sole constructions of air pressure chambers (APC) affect the STS in side-step cutting. Therefore, this study investigated the effects of altered STS through adjustable sole spacers on ground reaction force (GRF) and ankle and knee joint moments in side-step cutting. Seventeen healthy recreational athletes performed side-step cutting with experimental conditions including (i) barefoot (BF), (ii) unaltered shoes (UAS): soles consisting of APC, and (iii) altered shoes (AS): modified UAS by inserting elastomeric spacers into cavities formed by APC. Mechanical and biomechanical variables were measured. Significant differences were revealed across shoe conditions for impact peak (p = 0.009) and impulse (p = 0.018) in vertical GRF, time to achieve peak braking (p = 0.004), and peak propulsion (p = 0.025) for anterior-posterior GRF in ANOVA test. No significant differences were observed in GRF peaks and impulses between UAS and AS except for a trend of differences in impact peak (p = 0.087) for vertical GRF. At the ankle and knee joint, peak ankle power absorption (p = 0.019), peak knee internal rotation moment (p = 0.042), peak knee extension moment (p = 0.001), peak knee flexion moment (0.000), peak knee power absorption (p = 0.047) showed significant difference across three shoe conditions. However, no significant differences between the UAS and AS were noticed for peak joint moments and power. Altered shoe torsional stiffness did not significantly affect the peak forces and peak ankle and knee joint moments or powers; hence sole adjustment did not influence the cutting performance. This study might be insightful in sports footwear design, and adjusting shoe torsional stiffness by sole modification might be advantageous for athletes playing sports with cutting maneuvers to reduce the risk of injuries by controlling the twisting force at the ankle that frequently happens during cutting maneuvers.
AB - Directional changes in cutting maneuvers are critical in sports, where shoe torsional stiffness (STS) is an important factor. Shoes are designed based on different constructions and movement patterns. Hence, it is unclear how adjustable spacers into the sole constructions of air pressure chambers (APC) affect the STS in side-step cutting. Therefore, this study investigated the effects of altered STS through adjustable sole spacers on ground reaction force (GRF) and ankle and knee joint moments in side-step cutting. Seventeen healthy recreational athletes performed side-step cutting with experimental conditions including (i) barefoot (BF), (ii) unaltered shoes (UAS): soles consisting of APC, and (iii) altered shoes (AS): modified UAS by inserting elastomeric spacers into cavities formed by APC. Mechanical and biomechanical variables were measured. Significant differences were revealed across shoe conditions for impact peak (p = 0.009) and impulse (p = 0.018) in vertical GRF, time to achieve peak braking (p = 0.004), and peak propulsion (p = 0.025) for anterior-posterior GRF in ANOVA test. No significant differences were observed in GRF peaks and impulses between UAS and AS except for a trend of differences in impact peak (p = 0.087) for vertical GRF. At the ankle and knee joint, peak ankle power absorption (p = 0.019), peak knee internal rotation moment (p = 0.042), peak knee extension moment (p = 0.001), peak knee flexion moment (0.000), peak knee power absorption (p = 0.047) showed significant difference across three shoe conditions. However, no significant differences between the UAS and AS were noticed for peak joint moments and power. Altered shoe torsional stiffness did not significantly affect the peak forces and peak ankle and knee joint moments or powers; hence sole adjustment did not influence the cutting performance. This study might be insightful in sports footwear design, and adjusting shoe torsional stiffness by sole modification might be advantageous for athletes playing sports with cutting maneuvers to reduce the risk of injuries by controlling the twisting force at the ankle that frequently happens during cutting maneuvers.
UR - http://www.scopus.com/inward/record.url?scp=85186286242&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85186286242&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0297592
DO - 10.1371/journal.pone.0297592
M3 - Article
C2 - 38422014
AN - SCOPUS:85186286242
SN - 1932-6203
VL - 19
JO - PloS one
JF - PloS one
IS - 2 February
M1 - e0297592
ER -