Influence of varying level terrain on wheelchair propulsion biomechanics

Wendy J. Hurd, Melissa M.B. Morrow, Kenton R. Kaufman, Kai Nan An

研究成果: Article同行評審

12 引文 斯高帕斯(Scopus)

摘要

Objective: To evaluate manual wheelchair propulsion across level ground conditions that are encountered during everyday life. Design: Subjects included 14 individuals (13 with spinal cord injury [SCI], 1 with spina bifida) who were experienced manual wheelchair users and had no current upper extremity injury or pain complaints. Subjects propelled their wheelchairs at a self-selected speed across four different level ground conditions, including smooth and aggregate concrete and tile and carpet flooring. Temporal and kinetic measurements were obtained bilaterally from instrumented wheelchair rims during the steady-state phase of propulsion. Results: There were no side-to-side differences for any of the temporal or kinetic variables. Propulsion velocity and pushrim contact time were consistent across ground conditions. Propulsion frequency was significantly greater during both concrete conditions than either tile or carpet ground conditions. Forces and moments were greatest during the aggregate concrete ground condition and lowest during propulsion across tile flooring. Conclusions: The rolling resistance of level surface terrain significantly impacts wheelchair propulsion biomechanics. Identification of environmental conditions that may contribute to upper extremity pathology is a step toward injury prevention and maintenance of functional abilities for the manual wheelchair user. These results may be used to assist with home and community terrain design to minimize the demands associated with wheelchair propulsion.

原文English
頁(從 - 到)984-991
頁數8
期刊American Journal of Physical Medicine and Rehabilitation
87
發行號12
DOIs
出版狀態Published - 2008 十二月

All Science Journal Classification (ASJC) codes

  • 物理治療、運動療法和康復
  • 復健

指紋

深入研究「Influence of varying level terrain on wheelchair propulsion biomechanics」主題。共同形成了獨特的指紋。

引用此