Influences of top electrode reduction potential and operation ambient on the switching characteristics of tantalum oxide resistive switching memories

Tse Ming Ding, Yi Ju Chen, Jiann Shing Jeng, Jen Sue Chen

研究成果: Article

摘要

Modulation of the oxygen distribution is liable for the electrical performance of oxide-based devices. When the top electrode (TE) is deposited on the active layer, an oxygen exchange layer (OEL) may be formed at the interface. Oxygen ions can be absorbed and offered in OEL to assist resistive switching (RS). In this study, the impact of different TEs (Al, Zr, Ta and Au) on the active layer TaOx is investigated. TEs are chosen based on the reduction potential (E0Al=-2.13V, E0Zr=-1.55V, E0Ta=-0.75V, E0Au=1.52V), which determines whether OEL is formed. Based on TEM micrographs, as the difference of TE reduction potential to E0Ta becomes more negative, a thicker OEL exists. We find that Zr TE device has the most stable I-V characteristic and data retention, while Al TE device suffers from the reset failure, and Au TE device fails to switch. Moreover, we fabricate two different thicknesses (20 nm and 120 nm) of Zr TE and alter the operation ambient to vacuum (10-5 Torr) to study the influence on RS. The magnitude of reset voltage becomes larger when the devices are measured in vacuum ambient. According to these findings, the RS mechanism with different TE materials, thicknesses and at the different operation ambient is established.

原文English
文章編號125313
期刊AIP Advances
7
發行號12
DOIs
出版狀態Published - 2017 十二月 1

指紋

tantalum oxides
electrodes
oxygen
vacuum
electrode materials
oxygen ions
switches
modulation
transmission electron microscopy
oxides
electric potential

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

引用此文

@article{83f4b68d17624a2d9af0d9e8253f1400,
title = "Influences of top electrode reduction potential and operation ambient on the switching characteristics of tantalum oxide resistive switching memories",
abstract = "Modulation of the oxygen distribution is liable for the electrical performance of oxide-based devices. When the top electrode (TE) is deposited on the active layer, an oxygen exchange layer (OEL) may be formed at the interface. Oxygen ions can be absorbed and offered in OEL to assist resistive switching (RS). In this study, the impact of different TEs (Al, Zr, Ta and Au) on the active layer TaOx is investigated. TEs are chosen based on the reduction potential (E0Al=-2.13V, E0Zr=-1.55V, E0Ta=-0.75V, E0Au=1.52V), which determines whether OEL is formed. Based on TEM micrographs, as the difference of TE reduction potential to E0Ta becomes more negative, a thicker OEL exists. We find that Zr TE device has the most stable I-V characteristic and data retention, while Al TE device suffers from the reset failure, and Au TE device fails to switch. Moreover, we fabricate two different thicknesses (20 nm and 120 nm) of Zr TE and alter the operation ambient to vacuum (10-5 Torr) to study the influence on RS. The magnitude of reset voltage becomes larger when the devices are measured in vacuum ambient. According to these findings, the RS mechanism with different TE materials, thicknesses and at the different operation ambient is established.",
author = "Ding, {Tse Ming} and Chen, {Yi Ju} and Jeng, {Jiann Shing} and Chen, {Jen Sue}",
year = "2017",
month = "12",
day = "1",
doi = "10.1063/1.5006963",
language = "English",
volume = "7",
journal = "AIP Advances",
issn = "2158-3226",
publisher = "American Institute of Physics Publising LLC",
number = "12",

}

TY - JOUR

T1 - Influences of top electrode reduction potential and operation ambient on the switching characteristics of tantalum oxide resistive switching memories

AU - Ding, Tse Ming

AU - Chen, Yi Ju

AU - Jeng, Jiann Shing

AU - Chen, Jen Sue

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Modulation of the oxygen distribution is liable for the electrical performance of oxide-based devices. When the top electrode (TE) is deposited on the active layer, an oxygen exchange layer (OEL) may be formed at the interface. Oxygen ions can be absorbed and offered in OEL to assist resistive switching (RS). In this study, the impact of different TEs (Al, Zr, Ta and Au) on the active layer TaOx is investigated. TEs are chosen based on the reduction potential (E0Al=-2.13V, E0Zr=-1.55V, E0Ta=-0.75V, E0Au=1.52V), which determines whether OEL is formed. Based on TEM micrographs, as the difference of TE reduction potential to E0Ta becomes more negative, a thicker OEL exists. We find that Zr TE device has the most stable I-V characteristic and data retention, while Al TE device suffers from the reset failure, and Au TE device fails to switch. Moreover, we fabricate two different thicknesses (20 nm and 120 nm) of Zr TE and alter the operation ambient to vacuum (10-5 Torr) to study the influence on RS. The magnitude of reset voltage becomes larger when the devices are measured in vacuum ambient. According to these findings, the RS mechanism with different TE materials, thicknesses and at the different operation ambient is established.

AB - Modulation of the oxygen distribution is liable for the electrical performance of oxide-based devices. When the top electrode (TE) is deposited on the active layer, an oxygen exchange layer (OEL) may be formed at the interface. Oxygen ions can be absorbed and offered in OEL to assist resistive switching (RS). In this study, the impact of different TEs (Al, Zr, Ta and Au) on the active layer TaOx is investigated. TEs are chosen based on the reduction potential (E0Al=-2.13V, E0Zr=-1.55V, E0Ta=-0.75V, E0Au=1.52V), which determines whether OEL is formed. Based on TEM micrographs, as the difference of TE reduction potential to E0Ta becomes more negative, a thicker OEL exists. We find that Zr TE device has the most stable I-V characteristic and data retention, while Al TE device suffers from the reset failure, and Au TE device fails to switch. Moreover, we fabricate two different thicknesses (20 nm and 120 nm) of Zr TE and alter the operation ambient to vacuum (10-5 Torr) to study the influence on RS. The magnitude of reset voltage becomes larger when the devices are measured in vacuum ambient. According to these findings, the RS mechanism with different TE materials, thicknesses and at the different operation ambient is established.

UR - http://www.scopus.com/inward/record.url?scp=85038568643&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038568643&partnerID=8YFLogxK

U2 - 10.1063/1.5006963

DO - 10.1063/1.5006963

M3 - Article

AN - SCOPUS:85038568643

VL - 7

JO - AIP Advances

JF - AIP Advances

SN - 2158-3226

IS - 12

M1 - 125313

ER -