Inhibition of the EGFR/STAT3/CEBPD Axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder

Wei Jan Wang, Chien Feng Li, Yu Yi Chu, Yu Hui Wang, Tzyh Chyuan Hour, Chia-Jui Yen, Wen Chang Chang, Ju-Ming Wang

研究成果: Article

9 引文 (Scopus)

摘要

Purpose: Cisplatin (CDDP) is frequently used in combination chemotherapy with paclitaxel for treating urothelial carcinoma of the urinary bladder (UCUB). CDDP cross-resistance has been suggested to develop with paclitaxel, thus hindering successful UCUB treatment. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug resistance is imperative and may provide an insight in developing novel therapeutic strategy. Experimental Design: Loss-of-function assays were performed to elucidate the role of the EGFR and STAT3 in CDDP-induced CCAAT/enhancer-binding protein delta (CEBPD) expression in UCUB cells. Reporter and in vivo DNA-binding assays were employed to determine whether CEBPD directly regulates ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily C member 2 (ABCC2) activation. Finally, a xenograft animal assay was used to examine the abilities of gefitinib and S3I-201 (a STAT3 inhibitor) to reverse CDDP and paclitaxel sensitivity. Results: CEBPD expression was maintained in postoperative chemotherapy patients, and this expression was induced by CDDP even in CDDP-resistant UCUB cells. Upon CDDP treatment, CEBPD activated ABCB1 and ABCC2. Furthermore, the EGFR/STAT3 pathway contributed to CDDP-induced CEBPD expression in UCUB cells. Gefitinib and S3I-201 treatment significantly reduced the expression of CEBPD and enhanced the sensitivity of CDDP-resistant UCUB cells to CDDP and paclitaxel. Conclusions: Our results revealed the risk of CEBPD activation in CDDP-resistant UCUB cells and suggested a therapeutic strategy for patients with UCUB or UCUB resisted to CDDP and paclitaxel by combination with either gefitinib or S3I-201.

原文English
頁(從 - 到)503-513
頁數11
期刊Clinical Cancer Research
23
發行號2
DOIs
出版狀態Published - 2017 一月 15

指紋

CCAAT-Enhancer-Binding Protein-delta
Paclitaxel
Cisplatin
Urinary Bladder
NSC 74859
Carcinoma
Adenosine Triphosphate
Therapeutics
Combination Drug Therapy
Drug Resistance
Heterografts
Research Design

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

引用此文

Wang, Wei Jan ; Li, Chien Feng ; Chu, Yu Yi ; Wang, Yu Hui ; Hour, Tzyh Chyuan ; Yen, Chia-Jui ; Chang, Wen Chang ; Wang, Ju-Ming. / Inhibition of the EGFR/STAT3/CEBPD Axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder. 於: Clinical Cancer Research. 2017 ; 卷 23, 編號 2. 頁 503-513.
@article{4b7b929b074d47bfb5309f0a519e9e83,
title = "Inhibition of the EGFR/STAT3/CEBPD Axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder",
abstract = "Purpose: Cisplatin (CDDP) is frequently used in combination chemotherapy with paclitaxel for treating urothelial carcinoma of the urinary bladder (UCUB). CDDP cross-resistance has been suggested to develop with paclitaxel, thus hindering successful UCUB treatment. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug resistance is imperative and may provide an insight in developing novel therapeutic strategy. Experimental Design: Loss-of-function assays were performed to elucidate the role of the EGFR and STAT3 in CDDP-induced CCAAT/enhancer-binding protein delta (CEBPD) expression in UCUB cells. Reporter and in vivo DNA-binding assays were employed to determine whether CEBPD directly regulates ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily C member 2 (ABCC2) activation. Finally, a xenograft animal assay was used to examine the abilities of gefitinib and S3I-201 (a STAT3 inhibitor) to reverse CDDP and paclitaxel sensitivity. Results: CEBPD expression was maintained in postoperative chemotherapy patients, and this expression was induced by CDDP even in CDDP-resistant UCUB cells. Upon CDDP treatment, CEBPD activated ABCB1 and ABCC2. Furthermore, the EGFR/STAT3 pathway contributed to CDDP-induced CEBPD expression in UCUB cells. Gefitinib and S3I-201 treatment significantly reduced the expression of CEBPD and enhanced the sensitivity of CDDP-resistant UCUB cells to CDDP and paclitaxel. Conclusions: Our results revealed the risk of CEBPD activation in CDDP-resistant UCUB cells and suggested a therapeutic strategy for patients with UCUB or UCUB resisted to CDDP and paclitaxel by combination with either gefitinib or S3I-201.",
author = "Wang, {Wei Jan} and Li, {Chien Feng} and Chu, {Yu Yi} and Wang, {Yu Hui} and Hour, {Tzyh Chyuan} and Chia-Jui Yen and Chang, {Wen Chang} and Ju-Ming Wang",
year = "2017",
month = "1",
day = "15",
doi = "10.1158/1078-0432.CCR-15-1169",
language = "English",
volume = "23",
pages = "503--513",
journal = "Clinical Cancer Research",
issn = "1078-0432",
publisher = "American Association for Cancer Research Inc.",
number = "2",

}

Inhibition of the EGFR/STAT3/CEBPD Axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder. / Wang, Wei Jan; Li, Chien Feng; Chu, Yu Yi; Wang, Yu Hui; Hour, Tzyh Chyuan; Yen, Chia-Jui; Chang, Wen Chang; Wang, Ju-Ming.

於: Clinical Cancer Research, 卷 23, 編號 2, 15.01.2017, p. 503-513.

研究成果: Article

TY - JOUR

T1 - Inhibition of the EGFR/STAT3/CEBPD Axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder

AU - Wang, Wei Jan

AU - Li, Chien Feng

AU - Chu, Yu Yi

AU - Wang, Yu Hui

AU - Hour, Tzyh Chyuan

AU - Yen, Chia-Jui

AU - Chang, Wen Chang

AU - Wang, Ju-Ming

PY - 2017/1/15

Y1 - 2017/1/15

N2 - Purpose: Cisplatin (CDDP) is frequently used in combination chemotherapy with paclitaxel for treating urothelial carcinoma of the urinary bladder (UCUB). CDDP cross-resistance has been suggested to develop with paclitaxel, thus hindering successful UCUB treatment. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug resistance is imperative and may provide an insight in developing novel therapeutic strategy. Experimental Design: Loss-of-function assays were performed to elucidate the role of the EGFR and STAT3 in CDDP-induced CCAAT/enhancer-binding protein delta (CEBPD) expression in UCUB cells. Reporter and in vivo DNA-binding assays were employed to determine whether CEBPD directly regulates ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily C member 2 (ABCC2) activation. Finally, a xenograft animal assay was used to examine the abilities of gefitinib and S3I-201 (a STAT3 inhibitor) to reverse CDDP and paclitaxel sensitivity. Results: CEBPD expression was maintained in postoperative chemotherapy patients, and this expression was induced by CDDP even in CDDP-resistant UCUB cells. Upon CDDP treatment, CEBPD activated ABCB1 and ABCC2. Furthermore, the EGFR/STAT3 pathway contributed to CDDP-induced CEBPD expression in UCUB cells. Gefitinib and S3I-201 treatment significantly reduced the expression of CEBPD and enhanced the sensitivity of CDDP-resistant UCUB cells to CDDP and paclitaxel. Conclusions: Our results revealed the risk of CEBPD activation in CDDP-resistant UCUB cells and suggested a therapeutic strategy for patients with UCUB or UCUB resisted to CDDP and paclitaxel by combination with either gefitinib or S3I-201.

AB - Purpose: Cisplatin (CDDP) is frequently used in combination chemotherapy with paclitaxel for treating urothelial carcinoma of the urinary bladder (UCUB). CDDP cross-resistance has been suggested to develop with paclitaxel, thus hindering successful UCUB treatment. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug resistance is imperative and may provide an insight in developing novel therapeutic strategy. Experimental Design: Loss-of-function assays were performed to elucidate the role of the EGFR and STAT3 in CDDP-induced CCAAT/enhancer-binding protein delta (CEBPD) expression in UCUB cells. Reporter and in vivo DNA-binding assays were employed to determine whether CEBPD directly regulates ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily C member 2 (ABCC2) activation. Finally, a xenograft animal assay was used to examine the abilities of gefitinib and S3I-201 (a STAT3 inhibitor) to reverse CDDP and paclitaxel sensitivity. Results: CEBPD expression was maintained in postoperative chemotherapy patients, and this expression was induced by CDDP even in CDDP-resistant UCUB cells. Upon CDDP treatment, CEBPD activated ABCB1 and ABCC2. Furthermore, the EGFR/STAT3 pathway contributed to CDDP-induced CEBPD expression in UCUB cells. Gefitinib and S3I-201 treatment significantly reduced the expression of CEBPD and enhanced the sensitivity of CDDP-resistant UCUB cells to CDDP and paclitaxel. Conclusions: Our results revealed the risk of CEBPD activation in CDDP-resistant UCUB cells and suggested a therapeutic strategy for patients with UCUB or UCUB resisted to CDDP and paclitaxel by combination with either gefitinib or S3I-201.

UR - http://www.scopus.com/inward/record.url?scp=85011310958&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85011310958&partnerID=8YFLogxK

U2 - 10.1158/1078-0432.CCR-15-1169

DO - 10.1158/1078-0432.CCR-15-1169

M3 - Article

VL - 23

SP - 503

EP - 513

JO - Clinical Cancer Research

JF - Clinical Cancer Research

SN - 1078-0432

IS - 2

ER -