Intelligent Traffic Accident Prediction Model for Internet of Vehicles with Deep Learning Approach

Da Jie Lin, Mu Yen Chen, Hsiu Sen Chiang, Pradip Kumar Sharma

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)


In this study, a high accident risk prediction model is developed to analyze traffic accident data, and identify priority intersections for improvement. A database of the traffic accidents was organized and analyzed, and an intersection accident risk prediction model based on different mechanical learning methods was created to estimate the possible high accident risk locations for traffic management departments to use in planning countermeasures to reduce accident risk. Using Bayes' theorem to identify environmental variables at intersections that affect accident risk levels, this study found that road width, speed limit and roadside markings are the significant risk factors for traffic accidents. Meanwhile, Naïve Bayes, Decision tree C4.5, Bayesian Network, Multilayer perceptron (MLP), Deep Neural Networks (DNN), Deep Belief Network (DBN) and Convolutional Neural Network (CNN) were used to develop an accident risk prediction model. This model can also identify the key factors that affect the occurrence of high-risk intersections, and provide traffic management departments with a better basis for decision-making for intersection improvement. Using the same environmental characteristics as high-risk intersections for model inputs to estimate the degree of risk that may occur in the future, which can be used to prevent traffic accidents in the future. Moreover, it also can be used as a reference for future intersection design and environmental improvements.

頁(從 - 到)2340-2349
期刊IEEE Transactions on Intelligent Transportation Systems
出版狀態Published - 2022 3月 1

All Science Journal Classification (ASJC) codes

  • 汽車工程
  • 機械工業
  • 電腦科學應用


深入研究「Intelligent Traffic Accident Prediction Model for Internet of Vehicles with Deep Learning Approach」主題。共同形成了獨特的指紋。