Inter-wake turbulence properties in homogeneous particle-laden flows

J. H. Chen, G. M. Faeth

研究成果: Paper同行評審

1 引文 斯高帕斯(Scopus)


The properties of turbulence generated by uniform fluxes of monodisperse spherical particles moving through a uniform flowing gas were studied experimentally, emphasizing the properties of the region surrounding individual wake disturbances, i.e., the turbulent inter-wake region. Mean and fluctuating values, probability density functions and energy spectra of streamwise and cross stream velocities were measured within a counterflowing particle/air wind tunnel using particle wake discriminating laser velocimetry. Test conditions Included nearly monodisperse glass spheres having diameters of 0.5-2.2 mm, particle Reynolds numbers of 106-990, mean particle spacings of 13-208 mm, particle volume fractions less than 0.003%, direct rates of dissipation of turbulence by particles less than 4%, and turbulence generation rates sufficient to yield streamwise relative turbulence intensities in the range 0.2-1.5%. The turbulent inter-wake region was homogeneous and nearly isotropic with probability density functions that are well approximated by Gaussian functions. Relative turbulence intensities were correlated effectively based on an analogy to the properties of isotropic grid-generated turbulence by scaling with the mean particle spacing normalized by the particle wake momentum diameter. For present turbulence generation conditions, the turbulent inter-wake region had turbulence Reynolds numbers of 0.4-3.5 and was in the final decay period where vertical regions fill the turbulent inter-wake region but are sparse. This implies enhanced rates of dissipation of turbulent kinetic energy, and decreasing macroscale/microscalreatios of the turbulence with increasing Reynolds numbers as opposed to increasing ratios with increasing Reynolds numbers typical of conventional fully-developed isotropic turbulence.

出版狀態Published - 1999
事件30th Fluid Dynamics Conference, 1999 - Norfolk, United States
持續時間: 1999 6月 281999 7月 1


Other30th Fluid Dynamics Conference, 1999
國家/地區United States

All Science Journal Classification (ASJC) codes

  • 一般工程


深入研究「Inter-wake turbulence properties in homogeneous particle-laden flows」主題。共同形成了獨特的指紋。