Interconnected Microporous and Mesoporous Carbon Derived from Pitch for Lithium-Sulfur Batteries

Yu Chien Ko, Chun Hsiang Hsu, Chang An Lo, Chun Ming Wu, Hung Ling Yu, Chun Han Hsu, Hong Ping Lin, Chung Yuan Mou, Heng Liang Wu

研究成果: Article同行評審

5 引文 斯高帕斯(Scopus)


Lithium-sulfur (Li-S) batteries receive great attention due to their high theoretical energy density and low cost. However, the sulfur-carbon cathode suffers from the polysulfide dissolution during cycling, and the severe shuttle effect limits the practical application of Li-S batteries. In this work, a carbon material (XU76 carbon) derived from industry-residual petroleum was synthesized with a simple and low-cost method. Nitrogen adsorption, small-angle neutron scattering (SANS), adsorption kinetics, and UV-vis spectroscopy results show that the interconnected micromesopores in XU76 could act as a reservoir and trap polysulfide intermediates efficiently. The XU76 carbon with high surface area (∼1005 m2g-1), good electric conductivity, good ion transport, and optimized distribution of interconnected micromesopores is used as the sulfur host for trapping polysulfide intermediates and advancing sulfur redox kinetics. The Li-S battery with the sulfur-XU76 carbon cathode gives an initial discharge capacity of ∼1200 mAh g-1in the initial cycle and reversible capacity of ∼700 mAh g-1after 100 cycles at a C rate of 0.1 C while the Li-S battery with the sulfur-KB carbon cathode only delivers a discharge capacity of 400 mAh g-1after 100 cycles. Also, a discharge capacity of 462 mAh g-1is obtained after 200 cycles at a high C rate (1 C). The detailed reaction mechanism of sulfur-carbon cathodes is systematically studied at high C rates using operando Raman and S K-edge X-ray absorption spectroscopy.

頁(從 - 到)4462-4472
期刊ACS Sustainable Chemistry and Engineering
出版狀態Published - 2022 4月 11

All Science Journal Classification (ASJC) codes

  • 一般化學
  • 環境化學
  • 一般化學工程
  • 可再生能源、永續發展與環境


深入研究「Interconnected Microporous and Mesoporous Carbon Derived from Pitch for Lithium-Sulfur Batteries」主題。共同形成了獨特的指紋。