Interleukin-23 Mediates Osteoclastogenesis in Collagen-Induced Arthritis by Modulating MicroRNA-223

Shih Yao Chen, Ting Chien Tsai, Yuan Tsung Li, Yun Chiao Ding, Chung Teng Wang, Jeng Long Hsieh, Chao Liang Wu, Po Ting Wu, Ai Li Shiau

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

Interleukin-23 (IL-23) plays a pivotal role in rheumatoid arthritis (RA). IL-23 and microRNA-223 (miR-223) are both up-regulated and mediate osteoclastogenesis in mice with collagen-induced arthritis (CIA). The aim of this study was to examine the association between IL-23 and miR-223 in contributing to osteoclastogenesis and arthritis. Levels of IL-23p19 in joints of mice with CIA were determined. Lentiviral vectors expressing short hairpin RNA (shRNA) targeting IL-23p19 and lisofylline (LSF) were injected intraperitoneally into arthritic mice. Bone marrow-derived macrophages (BMMs) were treated with signal transducers and activators of transcription 4 (STAT4) specific shRNA and miR-223 sponge carried by lentiviral vectors in response to IL-23 stimulation. Treatment responses were determined by evaluating arthritis scores and histopathology in vivo, and detecting osteoclast differentiation and miR-223 levels in vitro. The binding of STAT4 to the promoter region of primary miR-223 (pri-miR-223) was determined in the Raw264.7 cell line. IL-23p19 expression was increased in the synovium of mice with CIA. Silencing IL-23p19 and inhibiting STAT4 activity ameliorates arthritis by reducing miR-223 expression. BMMs from mice in which STAT4 and miR-223 were silenced showed decreased osteoclast differentiation in response to IL-23 stimulation. IL-23 treatment increased the expression of miR-223 and enhanced the binding of STAT4 to the promoter of pri-miR-223. This study is the first to demonstrate that IL-23 promotes osteoclastogenesis by transcriptional regulation of miR-223 in murine macrophages and mice with CIA. Furthermore, our data indicate that LSF, a selective inhibitor of STAT4, should be an ideal therapeutic agent for treating RA through down-regulating miR-223-associated osteoclastogenesis.

原文English
文章編號9718
期刊International journal of molecular sciences
23
發行號17
DOIs
出版狀態Published - 2022 9月

All Science Journal Classification (ASJC) codes

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學

指紋

深入研究「Interleukin-23 Mediates Osteoclastogenesis in Collagen-Induced Arthritis by Modulating MicroRNA-223」主題。共同形成了獨特的指紋。

引用此