Ionic Conducting and Surface Active Binder of Poly (ethylene oxide)-block-poly(acrylonitrile) for High Power Lithium-ion Battery

Chih Hao Tsao, Chun Han Hsu, Ping Lin Kuo

研究成果: Article同行評審

36 引文 斯高帕斯(Scopus)

摘要

In this work, poly(ethylene oxide)-block-poly(acrylonitrile) (PEO-b-PAN) copolymer is used as a binder for LiFePO4 cathodes, where PEO-b-PAN not only conducts Li+ inside the cathode but also acts as a dispersant to disperse LiFePO4. This binder significantly increases the capacity under high discharge rate and overcome the limitation of LiFePO4 for high power density application. By XPS analysis, the incorporation of the PEO-b-PAN binder to the active materials of the LiFePO4 cathodes can be clearly observed from the binding energy of the nitrogen atom of the PEO-b-PAN. Due to the surface active properties of the PEO and PAN, PEO-b-PAN obviously increases the effective contact area and reduces electronical resistance. In addition to the surface active properties, this binder provides Li+ pathway; thus, it features low polarization, less interfacial resistance and good activity for electrochemical reaction. Consequently, these properties enable the PEO-b-PAN binder to have a higher discharge plateau potential at 3.10 V, while it is only 2.86 V for the PVDF binder at a 5C rate. Moreover, even at a 10C rate, the PEO-b-PAN binder still delivers extraordinary discharge capacities of 101 mAh g-1, significantly higher than that of the PVDF binder (32 mAh g-1). Overall, this ionic conducting and surface active binder exhibits good electrochemical properties and excellent high rate performance.

原文English
頁(從 - 到)41-47
頁數7
期刊Electrochimica Acta
196
DOIs
出版狀態Published - 2016 4月 1

All Science Journal Classification (ASJC) codes

  • 一般化學工程
  • 電化學

指紋

深入研究「Ionic Conducting and Surface Active Binder of Poly (ethylene oxide)-block-poly(acrylonitrile) for High Power Lithium-ion Battery」主題。共同形成了獨特的指紋。

引用此