Joint coordination during quiet stance: Effects of vision

Vijaya Krishnamoorthy, Jeng Feng Yang, John P. Scholz

研究成果: Article

57 引文 (Scopus)

摘要

Stabilization of the center of mass (CM) is an important goal of the postural control system. Coordination of several joints along the human "pendulum" is required to achieve this goal. We studied the coordination among body segments with respect to horizontal CM stabilization during a quiet stance task and the effects of vision on CM stability. Subjects were asked to stand quietly on a narrow wooden block supporting only the mid-foot, with either open (EO) or closed (EC) eyes on separate trials. Instant equilibrium points (IEPs) in the center of pressure (CP) trajectory were determined when the horizontal component of the ground reaction force was zero and the CP data were decomposed into their rambling and trembling components. The joint angle, CM and CP data were divided into short cycles (time-normalized to 100 data points) or longer segments (time-normalized to 1000 data points) of equal length beginning and ending in an IEP. Motor abundance with respect to patterns of joint coordination was evaluated using the uncontrolled manifold (UCM) approach. Here, a UCM is a subspace spanning all joint combinations resulting in a given CM position. All combinations of joint angles that lie within this subspace are equivalent with respect to that CM position while joint angle combinations lying in a subspace orthogonal to the UCM lead to deviation from that CM position. UCM analysis was performed on data organized either across time within longer segments or at each point in time across multiple segments or across multiple cycles. Regardless of method of analysis, most of the variance in joint space was constrained to be within the UCM, preserving the mean CM position in both the EO and EC conditions. Joint configuration variance was significantly higher in the EC than in the EO condition although this increase occurred primarily within the UCM rather than in the orthogonal subspace that would have led to variation of the CM position. These results demonstrate the ability of the control system to selectively "channel" motor variability into directions in joint space that stabilize the CM position. This effect was enhanced when the task was made more challenging in the absence of vision. There was also a significant relationship between joint variance that led to a change in the CM position and, in particular, the rambling component of the CP path, lending some support to the idea that the CNS prescribes a certain stable trajectory of the CP during quiet stance that leads to a small controlled movement of the CM.

原文English
頁(從 - 到)1-17
頁數17
期刊Experimental Brain Research
164
發行號1
DOIs
出版狀態Published - 2005 六月 1

指紋

Joints
Pressure
Aptitude
Foot
Analysis of Variance

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

引用此文

Krishnamoorthy, Vijaya ; Yang, Jeng Feng ; Scholz, John P. / Joint coordination during quiet stance : Effects of vision. 於: Experimental Brain Research. 2005 ; 卷 164, 編號 1. 頁 1-17.
@article{2384f9deb002411f95301b18ff40f9ca,
title = "Joint coordination during quiet stance: Effects of vision",
abstract = "Stabilization of the center of mass (CM) is an important goal of the postural control system. Coordination of several joints along the human {"}pendulum{"} is required to achieve this goal. We studied the coordination among body segments with respect to horizontal CM stabilization during a quiet stance task and the effects of vision on CM stability. Subjects were asked to stand quietly on a narrow wooden block supporting only the mid-foot, with either open (EO) or closed (EC) eyes on separate trials. Instant equilibrium points (IEPs) in the center of pressure (CP) trajectory were determined when the horizontal component of the ground reaction force was zero and the CP data were decomposed into their rambling and trembling components. The joint angle, CM and CP data were divided into short cycles (time-normalized to 100 data points) or longer segments (time-normalized to 1000 data points) of equal length beginning and ending in an IEP. Motor abundance with respect to patterns of joint coordination was evaluated using the uncontrolled manifold (UCM) approach. Here, a UCM is a subspace spanning all joint combinations resulting in a given CM position. All combinations of joint angles that lie within this subspace are equivalent with respect to that CM position while joint angle combinations lying in a subspace orthogonal to the UCM lead to deviation from that CM position. UCM analysis was performed on data organized either across time within longer segments or at each point in time across multiple segments or across multiple cycles. Regardless of method of analysis, most of the variance in joint space was constrained to be within the UCM, preserving the mean CM position in both the EO and EC conditions. Joint configuration variance was significantly higher in the EC than in the EO condition although this increase occurred primarily within the UCM rather than in the orthogonal subspace that would have led to variation of the CM position. These results demonstrate the ability of the control system to selectively {"}channel{"} motor variability into directions in joint space that stabilize the CM position. This effect was enhanced when the task was made more challenging in the absence of vision. There was also a significant relationship between joint variance that led to a change in the CM position and, in particular, the rambling component of the CP path, lending some support to the idea that the CNS prescribes a certain stable trajectory of the CP during quiet stance that leads to a small controlled movement of the CM.",
author = "Vijaya Krishnamoorthy and Yang, {Jeng Feng} and Scholz, {John P.}",
year = "2005",
month = "6",
day = "1",
doi = "10.1007/s00221-004-2205-6",
language = "English",
volume = "164",
pages = "1--17",
journal = "Experimental Brain Research",
issn = "0014-4819",
publisher = "Springer Verlag",
number = "1",

}

Joint coordination during quiet stance : Effects of vision. / Krishnamoorthy, Vijaya; Yang, Jeng Feng; Scholz, John P.

於: Experimental Brain Research, 卷 164, 編號 1, 01.06.2005, p. 1-17.

研究成果: Article

TY - JOUR

T1 - Joint coordination during quiet stance

T2 - Effects of vision

AU - Krishnamoorthy, Vijaya

AU - Yang, Jeng Feng

AU - Scholz, John P.

PY - 2005/6/1

Y1 - 2005/6/1

N2 - Stabilization of the center of mass (CM) is an important goal of the postural control system. Coordination of several joints along the human "pendulum" is required to achieve this goal. We studied the coordination among body segments with respect to horizontal CM stabilization during a quiet stance task and the effects of vision on CM stability. Subjects were asked to stand quietly on a narrow wooden block supporting only the mid-foot, with either open (EO) or closed (EC) eyes on separate trials. Instant equilibrium points (IEPs) in the center of pressure (CP) trajectory were determined when the horizontal component of the ground reaction force was zero and the CP data were decomposed into their rambling and trembling components. The joint angle, CM and CP data were divided into short cycles (time-normalized to 100 data points) or longer segments (time-normalized to 1000 data points) of equal length beginning and ending in an IEP. Motor abundance with respect to patterns of joint coordination was evaluated using the uncontrolled manifold (UCM) approach. Here, a UCM is a subspace spanning all joint combinations resulting in a given CM position. All combinations of joint angles that lie within this subspace are equivalent with respect to that CM position while joint angle combinations lying in a subspace orthogonal to the UCM lead to deviation from that CM position. UCM analysis was performed on data organized either across time within longer segments or at each point in time across multiple segments or across multiple cycles. Regardless of method of analysis, most of the variance in joint space was constrained to be within the UCM, preserving the mean CM position in both the EO and EC conditions. Joint configuration variance was significantly higher in the EC than in the EO condition although this increase occurred primarily within the UCM rather than in the orthogonal subspace that would have led to variation of the CM position. These results demonstrate the ability of the control system to selectively "channel" motor variability into directions in joint space that stabilize the CM position. This effect was enhanced when the task was made more challenging in the absence of vision. There was also a significant relationship between joint variance that led to a change in the CM position and, in particular, the rambling component of the CP path, lending some support to the idea that the CNS prescribes a certain stable trajectory of the CP during quiet stance that leads to a small controlled movement of the CM.

AB - Stabilization of the center of mass (CM) is an important goal of the postural control system. Coordination of several joints along the human "pendulum" is required to achieve this goal. We studied the coordination among body segments with respect to horizontal CM stabilization during a quiet stance task and the effects of vision on CM stability. Subjects were asked to stand quietly on a narrow wooden block supporting only the mid-foot, with either open (EO) or closed (EC) eyes on separate trials. Instant equilibrium points (IEPs) in the center of pressure (CP) trajectory were determined when the horizontal component of the ground reaction force was zero and the CP data were decomposed into their rambling and trembling components. The joint angle, CM and CP data were divided into short cycles (time-normalized to 100 data points) or longer segments (time-normalized to 1000 data points) of equal length beginning and ending in an IEP. Motor abundance with respect to patterns of joint coordination was evaluated using the uncontrolled manifold (UCM) approach. Here, a UCM is a subspace spanning all joint combinations resulting in a given CM position. All combinations of joint angles that lie within this subspace are equivalent with respect to that CM position while joint angle combinations lying in a subspace orthogonal to the UCM lead to deviation from that CM position. UCM analysis was performed on data organized either across time within longer segments or at each point in time across multiple segments or across multiple cycles. Regardless of method of analysis, most of the variance in joint space was constrained to be within the UCM, preserving the mean CM position in both the EO and EC conditions. Joint configuration variance was significantly higher in the EC than in the EO condition although this increase occurred primarily within the UCM rather than in the orthogonal subspace that would have led to variation of the CM position. These results demonstrate the ability of the control system to selectively "channel" motor variability into directions in joint space that stabilize the CM position. This effect was enhanced when the task was made more challenging in the absence of vision. There was also a significant relationship between joint variance that led to a change in the CM position and, in particular, the rambling component of the CP path, lending some support to the idea that the CNS prescribes a certain stable trajectory of the CP during quiet stance that leads to a small controlled movement of the CM.

UR - http://www.scopus.com/inward/record.url?scp=21244439902&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=21244439902&partnerID=8YFLogxK

U2 - 10.1007/s00221-004-2205-6

DO - 10.1007/s00221-004-2205-6

M3 - Article

C2 - 15841397

AN - SCOPUS:21244439902

VL - 164

SP - 1

EP - 17

JO - Experimental Brain Research

JF - Experimental Brain Research

SN - 0014-4819

IS - 1

ER -