Lava dome changes detection at agung mountain during high level of volcanic activity using uav photogrammetry

R. Andaru, J. Y. Rau

研究成果: Conference article

摘要

Lava dome changes detection during increasingly high volcanic activity are essential for hazard assessment purposes. However, it is challenging to conduct direct field measurement due to safety reason. Here, we investigate the lava dome changes of Mount Agung in Indonesia during the highest level of volcanic activity. On 22 September 2017, the rumbling and seismic activity in this volcano started increasing to the highest level for a period of time. We afterwards collected image data at lava dome area by using UAV over this time period. To accomplish the goal of change detection, we assembled and developed a fixed-wing UAV platform, i.e. Buffalo FX-79 to acquire images of Mount Agung whose elevation is roughly 3,142 m above sea level. We acquired the UAV images on two dates, i.e. Oct 19 and Oct 21 of 2017. Due to an exclusion zone surround the volcano, we could only operate the UAV at 20 km distance from the crater. With these data set, we produced three-dimensional point clouds, high-resolution Digital Elevation Model and orthophoto by using Structure from Motion (SfM) and Multi View Stereo (SfM-MVS) technique with Photoscan Pro software. From orthophoto data, we found two fluid areas at the crater's surface in NE direction (4,375.9 sq-m) and SE direction (3,749.8 sq-m). We also detected a fumarole which emitted steam and gases in the eastern part that continued for several days. In order to reveal the changes in lava dome surface, we used DEM to create cross-section profile. After that, we applied cloud to cloud comparison (C2C) algorithm to calculate the difference of lava dome based on two data set of point clouds and compared it with interferometric result from Sentinel-1A data. The data from the Sentinel-1A satellite (15 Oct – 27 Oct 2017) were processed to obtain the interferogram image of Mount Agung. This research therefore demonstrates a potential method to detect lava dome changes during high level of volcanic activity with photogrammetric methods by using UAV images. Within only two days the data were successfully acquired. From the DEM data and cross-section profile between two data set, we noticed that no significant surface change was found around the lava dome surface. Moreover, we also found that there was no significant lava dome changes and vertical displacement during these two time periods as the point cloud comparison and distance result. The average of difference distance is 2.27 cm with a maximal and minimal displacement of 255 cm and 0.37 cm respectively. This result was then validated by using InSAR Sentinel that showed small displacement, i.e 6.88 cm. It indicated that UAV photogrammetry showed a good performance to detect surface changes in centimeter fraction.

原文English
頁(從 - 到)173-179
頁數7
期刊International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
42
發行號2/W13
DOIs
出版狀態Published - 2019 六月 4
事件4th ISPRS Geospatial Week 2019 - Enschede, Netherlands
持續時間: 2019 六月 102019 六月 14

指紋

lava dome
Photogrammetry
Domes
photogrammetry
Unmanned aerial vehicles (UAV)
digital elevation model
orthophoto
Volcanoes
crater
volcano
cross section
Fixed wings
fumarole
high mountain
detection
Sea level
hazard assessment
Hazards
Indonesia
Steam

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Geography, Planning and Development

引用此文

@article{6137de4fad534c36b1bbfcafa7f34b3d,
title = "Lava dome changes detection at agung mountain during high level of volcanic activity using uav photogrammetry",
abstract = "Lava dome changes detection during increasingly high volcanic activity are essential for hazard assessment purposes. However, it is challenging to conduct direct field measurement due to safety reason. Here, we investigate the lava dome changes of Mount Agung in Indonesia during the highest level of volcanic activity. On 22 September 2017, the rumbling and seismic activity in this volcano started increasing to the highest level for a period of time. We afterwards collected image data at lava dome area by using UAV over this time period. To accomplish the goal of change detection, we assembled and developed a fixed-wing UAV platform, i.e. Buffalo FX-79 to acquire images of Mount Agung whose elevation is roughly 3,142 m above sea level. We acquired the UAV images on two dates, i.e. Oct 19 and Oct 21 of 2017. Due to an exclusion zone surround the volcano, we could only operate the UAV at 20 km distance from the crater. With these data set, we produced three-dimensional point clouds, high-resolution Digital Elevation Model and orthophoto by using Structure from Motion (SfM) and Multi View Stereo (SfM-MVS) technique with Photoscan Pro software. From orthophoto data, we found two fluid areas at the crater's surface in NE direction (4,375.9 sq-m) and SE direction (3,749.8 sq-m). We also detected a fumarole which emitted steam and gases in the eastern part that continued for several days. In order to reveal the changes in lava dome surface, we used DEM to create cross-section profile. After that, we applied cloud to cloud comparison (C2C) algorithm to calculate the difference of lava dome based on two data set of point clouds and compared it with interferometric result from Sentinel-1A data. The data from the Sentinel-1A satellite (15 Oct – 27 Oct 2017) were processed to obtain the interferogram image of Mount Agung. This research therefore demonstrates a potential method to detect lava dome changes during high level of volcanic activity with photogrammetric methods by using UAV images. Within only two days the data were successfully acquired. From the DEM data and cross-section profile between two data set, we noticed that no significant surface change was found around the lava dome surface. Moreover, we also found that there was no significant lava dome changes and vertical displacement during these two time periods as the point cloud comparison and distance result. The average of difference distance is 2.27 cm with a maximal and minimal displacement of 255 cm and 0.37 cm respectively. This result was then validated by using InSAR Sentinel that showed small displacement, i.e 6.88 cm. It indicated that UAV photogrammetry showed a good performance to detect surface changes in centimeter fraction.",
author = "R. Andaru and Rau, {J. Y.}",
year = "2019",
month = "6",
day = "4",
doi = "10.5194/isprs-archives-XLII-2-W13-173-2019",
language = "English",
volume = "42",
pages = "173--179",
journal = "International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives",
issn = "1682-1750",
number = "2/W13",

}

TY - JOUR

T1 - Lava dome changes detection at agung mountain during high level of volcanic activity using uav photogrammetry

AU - Andaru, R.

AU - Rau, J. Y.

PY - 2019/6/4

Y1 - 2019/6/4

N2 - Lava dome changes detection during increasingly high volcanic activity are essential for hazard assessment purposes. However, it is challenging to conduct direct field measurement due to safety reason. Here, we investigate the lava dome changes of Mount Agung in Indonesia during the highest level of volcanic activity. On 22 September 2017, the rumbling and seismic activity in this volcano started increasing to the highest level for a period of time. We afterwards collected image data at lava dome area by using UAV over this time period. To accomplish the goal of change detection, we assembled and developed a fixed-wing UAV platform, i.e. Buffalo FX-79 to acquire images of Mount Agung whose elevation is roughly 3,142 m above sea level. We acquired the UAV images on two dates, i.e. Oct 19 and Oct 21 of 2017. Due to an exclusion zone surround the volcano, we could only operate the UAV at 20 km distance from the crater. With these data set, we produced three-dimensional point clouds, high-resolution Digital Elevation Model and orthophoto by using Structure from Motion (SfM) and Multi View Stereo (SfM-MVS) technique with Photoscan Pro software. From orthophoto data, we found two fluid areas at the crater's surface in NE direction (4,375.9 sq-m) and SE direction (3,749.8 sq-m). We also detected a fumarole which emitted steam and gases in the eastern part that continued for several days. In order to reveal the changes in lava dome surface, we used DEM to create cross-section profile. After that, we applied cloud to cloud comparison (C2C) algorithm to calculate the difference of lava dome based on two data set of point clouds and compared it with interferometric result from Sentinel-1A data. The data from the Sentinel-1A satellite (15 Oct – 27 Oct 2017) were processed to obtain the interferogram image of Mount Agung. This research therefore demonstrates a potential method to detect lava dome changes during high level of volcanic activity with photogrammetric methods by using UAV images. Within only two days the data were successfully acquired. From the DEM data and cross-section profile between two data set, we noticed that no significant surface change was found around the lava dome surface. Moreover, we also found that there was no significant lava dome changes and vertical displacement during these two time periods as the point cloud comparison and distance result. The average of difference distance is 2.27 cm with a maximal and minimal displacement of 255 cm and 0.37 cm respectively. This result was then validated by using InSAR Sentinel that showed small displacement, i.e 6.88 cm. It indicated that UAV photogrammetry showed a good performance to detect surface changes in centimeter fraction.

AB - Lava dome changes detection during increasingly high volcanic activity are essential for hazard assessment purposes. However, it is challenging to conduct direct field measurement due to safety reason. Here, we investigate the lava dome changes of Mount Agung in Indonesia during the highest level of volcanic activity. On 22 September 2017, the rumbling and seismic activity in this volcano started increasing to the highest level for a period of time. We afterwards collected image data at lava dome area by using UAV over this time period. To accomplish the goal of change detection, we assembled and developed a fixed-wing UAV platform, i.e. Buffalo FX-79 to acquire images of Mount Agung whose elevation is roughly 3,142 m above sea level. We acquired the UAV images on two dates, i.e. Oct 19 and Oct 21 of 2017. Due to an exclusion zone surround the volcano, we could only operate the UAV at 20 km distance from the crater. With these data set, we produced three-dimensional point clouds, high-resolution Digital Elevation Model and orthophoto by using Structure from Motion (SfM) and Multi View Stereo (SfM-MVS) technique with Photoscan Pro software. From orthophoto data, we found two fluid areas at the crater's surface in NE direction (4,375.9 sq-m) and SE direction (3,749.8 sq-m). We also detected a fumarole which emitted steam and gases in the eastern part that continued for several days. In order to reveal the changes in lava dome surface, we used DEM to create cross-section profile. After that, we applied cloud to cloud comparison (C2C) algorithm to calculate the difference of lava dome based on two data set of point clouds and compared it with interferometric result from Sentinel-1A data. The data from the Sentinel-1A satellite (15 Oct – 27 Oct 2017) were processed to obtain the interferogram image of Mount Agung. This research therefore demonstrates a potential method to detect lava dome changes during high level of volcanic activity with photogrammetric methods by using UAV images. Within only two days the data were successfully acquired. From the DEM data and cross-section profile between two data set, we noticed that no significant surface change was found around the lava dome surface. Moreover, we also found that there was no significant lava dome changes and vertical displacement during these two time periods as the point cloud comparison and distance result. The average of difference distance is 2.27 cm with a maximal and minimal displacement of 255 cm and 0.37 cm respectively. This result was then validated by using InSAR Sentinel that showed small displacement, i.e 6.88 cm. It indicated that UAV photogrammetry showed a good performance to detect surface changes in centimeter fraction.

UR - http://www.scopus.com/inward/record.url?scp=85067516268&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067516268&partnerID=8YFLogxK

U2 - 10.5194/isprs-archives-XLII-2-W13-173-2019

DO - 10.5194/isprs-archives-XLII-2-W13-173-2019

M3 - Conference article

AN - SCOPUS:85067516268

VL - 42

SP - 173

EP - 179

JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives

JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives

SN - 1682-1750

IS - 2/W13

ER -