Life cycle assessment of torrefied algal biomass

Diana Rose T. Rivera, Alvin B. Culaba, Aristotle T. Ubando

研究成果: Conference contribution

1 引文 斯高帕斯(Scopus)

摘要

Biomass from microalgae and its residues can be burned directly, however it cannot be directly utilized to replace coal in the industry for power generation. This is due to its lower heating value as compared to coal. To solve this issue, a thermochemical process known as torrefaction is used. This increases the heating value of microalgal biomass to approximately the same level of coal. However, in order to consider for a large-scale production, the likely environmental impact of the prospective industrial scale should be gauged. Therefore, this paper presents a life cycle assessment of the production of torrefied microalgal biomass. Secondary data from the literature are then obtained and analyzed using a commercially available life cycle assessment tool SimaPro 8.5.2. Upon grouping the environmental impacts to three damage category, Damage to Human Health resulted to be the highest in all the production stages with 66.6% as compared to damage to Resources (29.2%) and Ecosystems (4.22%). The production stages are also weighed and the result revealed that the cultivation stage accounts for the highest combined environmental impacts with 65.7%. Upon scrutinizing the cultivation stage, large burden came from the use of fertilizers and electricity. Therefore, cultivation using inorganic fertilizers should be lessened. The use of waste nutrients from industries can be considered (organic fertilizers). Although microalgae have the potential for carbon capture and the torrefied algal biomass and its residue as a replacement for coal, the production process into its conversion to solid fuel using the electricity requires a suitable approach. Identifying other sources of energy and new technology should be addressed to help reduce the energy demand.

原文English
主出版物標題2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781538677674
DOIs
出版狀態Published - 2019 三月 12
事件10th IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018 - Baguio City, Philippines
持續時間: 2018 十一月 292018 十二月 2

出版系列

名字2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018

Conference

Conference10th IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018
國家Philippines
城市Baguio City
期間18-11-2918-12-02

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Electrical and Electronic Engineering
  • Human-Computer Interaction
  • Artificial Intelligence
  • Communication
  • Hardware and Architecture

指紋 深入研究「Life cycle assessment of torrefied algal biomass」主題。共同形成了獨特的指紋。

  • 引用此

    Rivera, D. R. T., Culaba, A. B., & Ubando, A. T. (2019). Life cycle assessment of torrefied algal biomass. 於 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018 [8666259] (2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/HNICEM.2018.8666259