Life cycle assessment of yard tractors using hydrogen fuel at the Port of Kaohsiung, Taiwan

Ching Chih Chang, Po Chien Huang, Jhih Sheng Tu

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

The purpose of this study is to use LCA to evaluate different fuel usage in yard tractors, which include diesel, electric, LNG, and hydrogen fuel cells. This study refers to ISO regulations to assess the investigation. Empirical results show (1) for the diesel yard tractor, the total carbon emissions is 43,870.60 kgCO2e, and the carbon footprint is 6.40×10−6 kgCO2e/TK. The hotspot is the usage stage (76.83% of the total emissions); (2) for the electric yard tractor, the total carbon emissions is 16,563.63 kgCO2e, and the carbon footprint is 2.42×10−6 kgCO2e/TK. The major emission hotspot is the raw material stage (96.15% of the total emissions); (3) for the LNG yard tractor, the total carbon emissions is 33,560.09 kgCO2e, and the carbon footprint is 4.89×10−6 kgCO2e/TK. The main emissions hotspot is the usage stage (85.04% of the total emissions); (4) for the hydrogen yard tractor, the total carbon emissions is 13,709.87 kgCO2e, and the carbon footprint is 2.00×10−6 kgCO2e/TK. The biggest emission's hotspot is the raw material stage (95.32% of the total emissions). The results demonstrate that the better fuel alternative to use for yard tractors is hydrogen, which has the greatest effect on GHG mitigation, followed by electric and LNG.

原文English
文章編號116222
期刊Energy
189
DOIs
出版狀態Published - 2019 十二月 15

All Science Journal Classification (ASJC) codes

  • 土木與結構工程
  • 建築與營造
  • 污染
  • 機械工業
  • 工業與製造工程
  • 電氣與電子工程

指紋

深入研究「Life cycle assessment of yard tractors using hydrogen fuel at the Port of Kaohsiung, Taiwan」主題。共同形成了獨特的指紋。

引用此