Lightweight Authentication Mechanism for Industrial IoT Environment Combining Elliptic Curve Cryptography and Trusted Token

Yu Sheng Yang, Shih Hsiung Lee, Jie Min Wang, Chu Sing Yang, Yuen Min Huang, Ting Wei Hou

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

With the promotion of Industry 4.0, which emphasizes interconnected and intelligent devices, several factories have introduced numerous terminal Internet of Things (IoT) devices to collect relevant data or monitor the health status of equipment. The collected data are transmitted back to the backend server through network transmission by the terminal IoT devices. However, as devices communicate with each other over a network, the entire transmission environment faces significant security issues. When an attacker connects to a factory network, they can easily steal the transmitted data and tamper with them or send false data to the backend server, causing abnormal data in the entire environment. This study focuses on investigating how to ensure that data transmission in a factory environment originates from legitimate devices and that related confidential data are encrypted and packaged. This paper proposes an authentication mechanism between terminal IoT devices and backend servers based on elliptic curve cryptography and trusted tokens with packet encryption using the TLS protocol. Before communication between terminal IoT devices and backend servers can occur, the authentication mechanism proposed in this paper must first be implemented to confirm the identity of the devices and, thus, the problem of attackers imitating terminal IoT devices transmitting false data is resolved. The packets communicated between devices are also encrypted, preventing attackers from knowing their content even if they steal the packets. The authentication mechanism proposed in this paper ensures the source and correctness of the data. In terms of security analysis, the proposed mechanism in this paper effectively withstands replay attacks, eavesdropping attacks, man-in-the-middle attacks, and simulated attacks. Additionally, the mechanism supports mutual authentication and forward secrecy. In the experimental results, the proposed mechanism demonstrates approximately 73% improvement in efficiency through the lightweight characteristics of elliptic curve cryptography. Moreover, in the analysis of time complexity, the proposed mechanism exhibits significant effectiveness.

原文English
文章編號4970
期刊Sensors
23
發行號10
DOIs
出版狀態Published - 2023 5月

All Science Journal Classification (ASJC) codes

  • 分析化學
  • 資訊系統
  • 原子與分子物理與光學
  • 生物化學
  • 儀器
  • 電氣與電子工程

指紋

深入研究「Lightweight Authentication Mechanism for Industrial IoT Environment Combining Elliptic Curve Cryptography and Trusted Token」主題。共同形成了獨特的指紋。

引用此