Long short-term memory approach to estimate battery remaining useful life using partial data

Benvolence Chinomona, Chunhui Chung, Lien Kai Chang, Wei Chih Su, Mi Ching Tsai

研究成果: Article同行評審

56 引文 斯高帕斯(Scopus)

摘要

Due to the increasing demand of electrical vehicles (EVs), prognostics of the battery state is of paramount importance. The nonlinearity of the signal (e.g. voltage) results in the complexity of analyzing the degradation of the battery. Aging characteristics extracted from the voltage, current, and temperature when the battery is fully charged/discharged were commonly used by previous researchers to determine the battery state. The drawbacks of the previous prediction algorithms are insufficient or irrelevant features to explicitly model the battery aging and the use of fully charged/discharged datasets, which might result in poor prediction accuracy. Therefore, this study proposes a feature selection technique to adequately select optimum statistical feature subset and the use of partial charge/discharge data to determine the battery remaining useful life (RUL) using Recurrent Neural Network- Long Short-Term Memory (RNN-LSTM). The proposed approach demonstrated exceptional RUL prediction results, with the root mean square error (RMSE) of 0.00286 and mean average error (MAE) of 0.00222 using partial discharge data. The proposed method shows prediction improvement in comparison with the use of full data and state-of-the-art outcomes from previous studies of the same open data from the National Aeronautics and Space Administration (NASA) prognostic battery data sets.

原文English
頁(從 - 到)165419-165431
頁數13
期刊IEEE Access
8
DOIs
出版狀態Published - 2020

All Science Journal Classification (ASJC) codes

  • 一般電腦科學
  • 一般材料科學
  • 一般工程

指紋

深入研究「Long short-term memory approach to estimate battery remaining useful life using partial data」主題。共同形成了獨特的指紋。

引用此