TY - JOUR
T1 - Loose-hinge total elbow arthroplasty
T2 - An experimental study of the effects of implant alignment on three-dimensional elbow kinematics
AU - Schuind, Frédéric
AU - O'Driscoll, S.
AU - Korinek, S.
AU - An, K. N.
AU - Morrey, B. F.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1995
Y1 - 1995
N2 - A previous study suggested that the kinematics of a loose-hinge total elbow arthroplasty (TEA) are those of a truly semiconstrained joint. This study addresses the effects of malposition of the implant. The three-dimensional elbow kinematics during simulated active motion were studiedin six cadaver specimens using an electromagnetic tracking device. In addition to simulated active elbow flexion, flexion arcs were obtained under an elbow varus or valgus moment, to calculate the structural varus-valgus laxities. The results after four different Coonrad-Morrey TEA positions of implantation were compared with those of the intact elbow. The flexion-extension amplitudes were not significantly decreased after TEA implantation, except with external rotation of the ulnar component, which resulted in a loss of extension. In the intact elbow and after TEA implantation in any position, the mean varus-valgus deviations throughout elbow flexion were in a narrower range than the structural limits imposed by the ligaments (intant elbow) or the TEA binge design. With internal malrotation of the humeral component over 10°, however, the valgus structural limit was reached and, conversely, the varus limit with external rotation over 10°. The clinical improvement observed with the semiconstrained TEA is derived from the benefits of the less constrained articulation. The proximodistal changes of TEA implantation have no consequence on the kinematic pattern. Rotational malpositioning of either humeral or ulnar component should be avoided, the first because it changes the kinematic pattern toward the structural limits of the implant and, therefore, may lead to excessive stresses at the bone-cement implant interfaces and to early loosening, and the latter becuase it causes loss of extension.
AB - A previous study suggested that the kinematics of a loose-hinge total elbow arthroplasty (TEA) are those of a truly semiconstrained joint. This study addresses the effects of malposition of the implant. The three-dimensional elbow kinematics during simulated active motion were studiedin six cadaver specimens using an electromagnetic tracking device. In addition to simulated active elbow flexion, flexion arcs were obtained under an elbow varus or valgus moment, to calculate the structural varus-valgus laxities. The results after four different Coonrad-Morrey TEA positions of implantation were compared with those of the intact elbow. The flexion-extension amplitudes were not significantly decreased after TEA implantation, except with external rotation of the ulnar component, which resulted in a loss of extension. In the intact elbow and after TEA implantation in any position, the mean varus-valgus deviations throughout elbow flexion were in a narrower range than the structural limits imposed by the ligaments (intant elbow) or the TEA binge design. With internal malrotation of the humeral component over 10°, however, the valgus structural limit was reached and, conversely, the varus limit with external rotation over 10°. The clinical improvement observed with the semiconstrained TEA is derived from the benefits of the less constrained articulation. The proximodistal changes of TEA implantation have no consequence on the kinematic pattern. Rotational malpositioning of either humeral or ulnar component should be avoided, the first because it changes the kinematic pattern toward the structural limits of the implant and, therefore, may lead to excessive stresses at the bone-cement implant interfaces and to early loosening, and the latter becuase it causes loss of extension.
UR - http://www.scopus.com/inward/record.url?scp=0029089828&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029089828&partnerID=8YFLogxK
U2 - 10.1016/S0883-5403(05)80214-1
DO - 10.1016/S0883-5403(05)80214-1
M3 - Article
C2 - 9273381
AN - SCOPUS:0029089828
SN - 0883-5403
VL - 10
SP - 670
EP - 678
JO - Journal of Arthroplasty
JF - Journal of Arthroplasty
IS - 5
ER -