TY - JOUR
T1 - Low-energy electronic properties of multilayer graphite in an electric field
AU - Lu, C. L.
AU - Chang, C. P.
AU - Ho, J. H.
AU - Tsai, C. C.
AU - Lin, M. F.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/5
Y1 - 2006/5
N2 - The low-energy electronic properties of multilayer graphite are studied through the tight-binding model. The dependence of electronic properties on the number of layers, the interlayer interactions, and the electric field is investigated in detail. The interlayer interactions destroy the symmetry and the isotropy of energy bands, change linear bands into parabolic bands, and cause the weak overlap of valence and conduction bands. The electric field leads to the subband anticrossing, the change of subband spacing, and the increase of edge states. Dilayer graphite becomes a semiconductor. The effects resulting from interlayer interactions and electric field are completely reflected on the features of density of states, such as two kinds of special structures, the shift of peak position, the change of peak height, and the alternation of band gap.
AB - The low-energy electronic properties of multilayer graphite are studied through the tight-binding model. The dependence of electronic properties on the number of layers, the interlayer interactions, and the electric field is investigated in detail. The interlayer interactions destroy the symmetry and the isotropy of energy bands, change linear bands into parabolic bands, and cause the weak overlap of valence and conduction bands. The electric field leads to the subband anticrossing, the change of subband spacing, and the increase of edge states. Dilayer graphite becomes a semiconductor. The effects resulting from interlayer interactions and electric field are completely reflected on the features of density of states, such as two kinds of special structures, the shift of peak position, the change of peak height, and the alternation of band gap.
UR - http://www.scopus.com/inward/record.url?scp=33747887789&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33747887789&partnerID=8YFLogxK
U2 - 10.1016/j.physe.2005.12.110
DO - 10.1016/j.physe.2005.12.110
M3 - Article
AN - SCOPUS:33747887789
VL - 32
SP - 585
EP - 588
JO - Physica E: Low-Dimensional Systems and Nanostructures
JF - Physica E: Low-Dimensional Systems and Nanostructures
SN - 1386-9477
IS - 1-2 SPEC. ISS.
ER -