Low-energy Landau levels of Bernal zigzag graphene ribbons

Y. C. Huang, C. P. Chang, W. S. Su, M. F. Lin

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)


Low-energy Landau levels of Bernal zigzag graphene ribbons in the presence of a uniform perpendicular magnetic field (B) are investigated by the Peierls coupling tight-binding model. State energies and associated wave functions are dominated by the B -field strength and the kz -dependent inter-ribbon interactions. The occupied valence bands are asymmetric to the unoccupied conduction bands about the Fermi level. Many doubly degenerate Landau levels and singlet curving magnetobands exist along the kx and kz directions, respectively. The kz -dependent inter-ribbon interactions dramatically modify the magnetobands, such as the lift of double degeneracy, the change in state energies, and the production of two groups of curving magnetobands. They also change the characteristics of the wave functions and cause the redistribution of the charge-carrier density. The kz -dependent wave functions are further used to predict the selection rule of the optical transition.

期刊Journal of Applied Physics
出版狀態Published - 2009

All Science Journal Classification (ASJC) codes

  • 物理與天文學 (全部)


深入研究「Low-energy Landau levels of Bernal zigzag graphene ribbons」主題。共同形成了獨特的指紋。