Low porosity fese preferred orientation crystal growth by bridgman method

Chia Ming Yang, Po Wei Chen, Jui-Chao Kuo, Pavel Diko, In-Gann Chen, Maw Kuen Wu

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

The new kind of iron-based superconductor FeSe which has being widely studied recently is arsenic-free and has about 8 K of Tc. The less poisonous and simple binary FeSe is interesting for both scientific studies and engineering applications, even though its Tc is lower than that of other iron-based compounds. Recently, the single crystal and thin film technology of FeSe has been studied to realize the anisotropic property. In our study, the highly preferred orientation poly-crystal was grown by the Bridgman method. The vacuum condition during growth affects the porosity of FeSe. It is difficult to produce high density under 1 atmosphere even when maintained at high temperature for a long time. When the pressure is controlled at less than 10-1 torr, ultra low porosity (and high density) crystal can be grown. Polarized optical microscope images show the single crystal domain up to about 5 mm with (110) preferred orientation by XRD analysis. A XRD peak shift is observed between samples grown by furnace-cooling and the Bridgman method, which is supposed to be due to residual stress during growth. It also induced a Tc decrease to 5.9 K in the Bridgman sample, but recovered to 6.8 K after annealing. From the microstructure, considerable columnar precipitation is observed in the Bridgman sample, which is identified as iron-rich phase by energy dispersive spectrum (EDS) analysis.

原文English
文章編號5638148
頁(從 - 到)2845-2848
頁數4
期刊IEEE Transactions on Applied Superconductivity
21
發行號3 PART 3
DOIs
出版狀態Published - 2011 六月

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

指紋 深入研究「Low porosity fese preferred orientation crystal growth by bridgman method」主題。共同形成了獨特的指紋。

引用此