Manga Text Detection with Manga-Specific Data Augmentation and Its Applications on Emotion Analysis

Yi Ting Yang, Wei Ta Chu

研究成果: Conference contribution

摘要

We especially target at detecting text in atypical font styles and in cluttered background for Japanese comics (manga). To enable the detection model to detect atypical text, we augment training data by the proposed manga-specific data augmentation. A generative adversarial network is developed to generate atypical text regions, which are then blended into manga pages to largely increase the volume and diversity of training data. We verify the importance of manga-specific data augmentation. Furthermore, with the help of manga text detection, we fuse global visual features and local text features to enable more accurate emotion analysis.

原文English
主出版物標題MultiMedia Modeling - 29th International Conference, MMM 2023, Proceedings
編輯Duc-Tien Dang-Nguyen, Cathal Gurrin, Alan F. Smeaton, Martha Larson, Stevan Rudinac, Minh-Son Dao, Christoph Trattner, Phoebe Chen
發行者Springer Science and Business Media Deutschland GmbH
頁面29-40
頁數12
ISBN(列印)9783031278174
DOIs
出版狀態Published - 2023
事件29th International Conference on MultiMedia Modeling, MMM 2023 - Bergen, Norway
持續時間: 2023 1月 92023 1月 12

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13834 LNCS
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Conference

Conference29th International Conference on MultiMedia Modeling, MMM 2023
國家/地區Norway
城市Bergen
期間23-01-0923-01-12

All Science Journal Classification (ASJC) codes

  • 理論電腦科學
  • 一般電腦科學

指紋

深入研究「Manga Text Detection with Manga-Specific Data Augmentation and Its Applications on Emotion Analysis」主題。共同形成了獨特的指紋。

引用此