Mapeo y predicción de subsidencia a través de modelos de regresión espacio-temporal de observaciones de extracción de aguas subterráneas y de subsidencia

貢獻的翻譯標題: 基于地下水位降深和沉降观测的时空回归模型的沉降制图和预测

Muhammad Zeeshan Ali, Hone Jay Chu, Thomas J. Burbey

研究成果: Article同行評審

16 引文 斯高帕斯(Scopus)

摘要

Many regions of the earth are experiencing land subsidence owing to aquifer-system compaction, a consequence of groundwater depletion manifesting as excessive groundwater drawdown. The relation between groundwater drawdown and land subsidence caused by aquifer-system compaction is nonstationary in space and time due to the highly heterogeneous aquifer material, hydraulic and mechanical properties, and spatio-temporal variations in aquifer recharge and groundwater extraction. Annual land subsidence maps are developed using geographical time-slice weighted regression (GTSWR) and geographical temporal weighted regression (GTWR). Considering these spatiotemporal regressions, groundwater drawdown is used as the input parameter to estimate spatial and temporal patterns of land subsidence in both Changhua and Yunlin counties, Taiwan, for an 8-year period. Results indicate that the GTSWR or GTWR models yield greater accuracy with a lower root mean square error (RMSE) than linear regression (LR). The correlation between the predicted and observed data for LR, GTSWR and GTWR is 0.31, 0.93 and 0.94, respectively. In the spatiotemporal models, areas with smaller model coefficients represent over-consolidated sediments, whereas the areas with larger coefficients represent where sediments are normally consolidated. Normally consolidated sediments tend to produce the greatest amount of land subsidence. Annual subsidence patterns reveal that greater levels of subsidence are progressing inland. The greatest level of subsidence occurs in central Yunlin (7 cm/year) due to groundwater extraction. The spatio-temporal regression model is used to predict the effects of reduced groundwater extraction for different areas based on two scenarios of 30 and 50% reductions in groundwater drawdown.

貢獻的翻譯標題基于地下水位降深和沉降观测的时空回归模型的沉降制图和预测
原文Spanish
頁(從 - 到)2865-2876
頁數12
期刊Hydrogeology Journal
28
發行號8
DOIs
出版狀態Published - 2020 12月

All Science Journal Classification (ASJC) codes

  • 水科學與技術
  • 地球與行星科學(雜項)

指紋

深入研究「基于地下水位降深和沉降观测的时空回归模型的沉降制图和预测」主題。共同形成了獨特的指紋。

引用此