Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica

Wen Ming Chen, Chih Hui Wu, Euan K. James, Jo Shu Chang

研究成果: Article同行評審

139 引文 斯高帕斯(Scopus)

摘要

A novel metal biosorption system consisting of the symbiotic combination of an indigenous metal-resistant rhizobial strain, Cupriavidus taiwanensis TJ208, and its host plant Mimosa pudica has been developed for the removal of heavy-metal pollutants. Free-living C. taiwanensis TJ208 cells were able to adsorb 50.1, 19.0, and 19.6 mg/g of Pb, Cu, and Cd, respectively. After nodulation via inoculation with strain TJ208, the metal uptake ability of M. pudica markedly increased, as the nodulated M. pudica displayed a high metal uptake capacity (qmax) of 485, 25, and 43 mg/g, respectively, which is 86, 12, and 70% higher than that of nodule-free plants. Moreover, with TJ208 nodules, the M. pudica plant also displayed a 71, 81, and 33% enhancement in metal adsorption efficiency (η) for Pb, Cu, and Cd, respectively. The nodulation appeared to give the greatest enhancing effect on the uptake of Pb, which is consistent with the preference of metal adsorption ability of TJ208. This seems to indicate the crucial role that the rhizobial strain may play in stimulating metal uptake of the nodulated plant. Furthermore, the results show that metal accumulation in the nodulated plant mainly occurred in the roots, accounting for 65-95% of total metal uptake. In contrast, the nodules and the shoots only contributed to 3-12 and 2-23% of total metal uptake, respectively. Nevertheless, the specific adsorption capacity of nodules is comparable to that of the roots. Hence, this work demonstrates the feasibility and effectiveness of using the nodulated plants to promote phyto-removal of heavy metals from the polluted environment as well as to restrict the metal contaminants in the unharmful region of the plant.

原文English
頁(從 - 到)364-371
頁數8
期刊Journal of Hazardous Materials
151
發行號2-3
DOIs
出版狀態Published - 2008 3月 1

All Science Journal Classification (ASJC) codes

  • 環境工程
  • 環境化學
  • 廢物管理和處置
  • 污染
  • 健康、毒理學和誘變

指紋

深入研究「Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica」主題。共同形成了獨特的指紋。

引用此