Microwave-assisted synthesis of triple 2D g-C3N4/Bi2WO6/rGO composites for ibuprofen photodegradation: Kinetics, mechanism and toxicity evaluation of degradation products

研究成果: Article同行評審

106 引文 斯高帕斯(Scopus)

摘要

In this study, the visible-light-driven Z-scheme g-C3N4/Bi2WO6/rGO heterojunctions with 2D/2D/2D configurations are prepared via a facile, rapid and low temperature microwave-assisted method. The physicochemical properties and morphologies of these heterostructured photocatalysts are characterized by various spectroscopies such as XRD, XPS, TEM/SEM, PL, FT-IR, UV–Visible spectroscopy and nitrogen adsorption measurements. The prepared g-C3N4/Bi2WO6/3 wt% rGO photocatalysts (incorporated with optimal 3 wt% of rGO) possess ca. 86 and 98% of ibuprofen (IBF) photodegradation under the visible light (λ > 420 nm) and solar light irradiation, respectively. The formation of well crystallized structure, morphology (nanoplates structure of Bi2WO6), higher visible light absorption and specific surface area (25.4 m2 g−1) are responsible for the superior performance of g-C3N4/Bi2WO6/3 wt% rGO. Moreover, the larger interfacial contact (identified by HRTEM) between triple 2D g-C3N4/Bi2WO6/rGO heterostructures can lead to surpassing interfacial charge carrier dynamics and reduce the combination of electron-hole pairs. IBF photodegradation intermediates and the corresponding reaction mechanisms are further investigated by using LC-MS/MS, indicating the superoxide radical ([rad]O2) and hydroxyl radicals ([rad]OH) are involved in the photodegradation of IBF and accordingly five intermediates are produced via three possible reaction pathways. The anti-hormonal effects of IBF and the photodegraded intermediate products are also evaluated by yeast-based bioassays. The results show that the intermediate products of photodegraded IBF have lower antagonistic effect on human hormone receptors than the pristine IBF.

原文English
文章編號124098
期刊Chemical Engineering Journal
387
DOIs
出版狀態Published - 2020 5月 1

All Science Journal Classification (ASJC) codes

  • 一般化學
  • 環境化學
  • 一般化學工程
  • 工業與製造工程

指紋

深入研究「Microwave-assisted synthesis of triple 2D g-C3N4/Bi2WO6/rGO composites for ibuprofen photodegradation: Kinetics, mechanism and toxicity evaluation of degradation products」主題。共同形成了獨特的指紋。

引用此