Microwave-assisted synthesis of triple 2D g-C3N4/Bi2WO6/rGO composites for ibuprofen photodegradation: Kinetics, mechanism and toxicity evaluation of degradation products

研究成果: Article

3 引文 斯高帕斯(Scopus)


In this study, the visible-light-driven Z-scheme g-C3N4/Bi2WO6/rGO heterojunctions with 2D/2D/2D configurations are prepared via a facile, rapid and low temperature microwave-assisted method. The physicochemical properties and morphologies of these heterostructured photocatalysts are characterized by various spectroscopies such as XRD, XPS, TEM/SEM, PL, FT-IR, UV–Visible spectroscopy and nitrogen adsorption measurements. The prepared g-C3N4/Bi2WO6/3 wt% rGO photocatalysts (incorporated with optimal 3 wt% of rGO) possess ca. 86 and 98% of ibuprofen (IBF) photodegradation under the visible light (λ > 420 nm) and solar light irradiation, respectively. The formation of well crystallized structure, morphology (nanoplates structure of Bi2WO6), higher visible light absorption and specific surface area (25.4 m2 g−1) are responsible for the superior performance of g-C3N4/Bi2WO6/3 wt% rGO. Moreover, the larger interfacial contact (identified by HRTEM) between triple 2D g-C3N4/Bi2WO6/rGO heterostructures can lead to surpassing interfacial charge carrier dynamics and reduce the combination of electron-hole pairs. IBF photodegradation intermediates and the corresponding reaction mechanisms are further investigated by using LC-MS/MS, indicating the superoxide radical ([rad]O2) and hydroxyl radicals ([rad]OH) are involved in the photodegradation of IBF and accordingly five intermediates are produced via three possible reaction pathways. The anti-hormonal effects of IBF and the photodegraded intermediate products are also evaluated by yeast-based bioassays. The results show that the intermediate products of photodegraded IBF have lower antagonistic effect on human hormone receptors than the pristine IBF.

期刊Chemical Engineering Journal
出版狀態Published - 2020 五月 1

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

指紋 深入研究「Microwave-assisted synthesis of triple 2D g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub>/rGO composites for ibuprofen photodegradation: Kinetics, mechanism and toxicity evaluation of degradation products」主題。共同形成了獨特的指紋。

  • 引用此