Migration patterns and cell functions of adipose-derived stromal cells on self-assembled monolayers with different functional groups

Hsiao Feng Chieh, Fong Chin Su, Sheng Che Lin, Meng Ru Shen, Jiunn Der Liao

研究成果: Article同行評審

11 引文 斯高帕斯(Scopus)

摘要

Microenvironments provide cues to stem cells and induce signals to direct their fate. With a view toward further understanding the correlation between surface chemistry and cell functions of stem cells, adiposederived stromal cells (ADSCs) and self-assembled monolayers terminated with four different functional groups (-CH3, -NH2, -COOH and -OH) were used to assess cell adhesion, migration and differentiation potential in short-term incubation. Quantitative time-lapse microscopic analysis revealed that migration speed and patterns were strongly regulated by surface chemistry. ADSCs showed a mesenchymal migration pattern on the -COOH-modified surface. In contrast, cells on the -CH3-modified surface displayed an amoeboid-like migration pattern. Cell-migration speeds on the chemically-modified surfaces followed the sequence (by tail-groups): -CH3>-COOH>-OH>-NH2. After 1 day of incubation, ADSCs showed a round compact shape and adipogenic differentiation potential on the -CH3-modified surface. The round compact shape and extremely different migration pattern of ADSCs on -CH 3 surfaces were attributed to the lower amount of exposed cell-binding domains of adsorbed proteins. ADSCs exhibited spindle-like shape and higher Collagen II expression on the -COOH-modified surface and well-spread morphology and higher Runx2 expression were observed on the -NH2- and -OH-modified surfaces. Surface chemistry presented a strong influence on cell functions of ADSCs, including cell adhesion, migration and mRNA expression in short-term incubation.

原文English
頁(從 - 到)94-117
頁數24
期刊Journal of Biomaterials Science, Polymer Edition
24
發行號1
DOIs
出版狀態Published - 2013

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

指紋 深入研究「Migration patterns and cell functions of adipose-derived stromal cells on self-assembled monolayers with different functional groups」主題。共同形成了獨特的指紋。

引用此