Modeling VBR traffic with autoregressive Gaussian processes

研究成果: Conference contribution

摘要

Recent studies about network traffic measurement show that today's network traffic exhibits long-range dependence (LRD). The computation effort of generating LRD traffic is directly proportional to the length of the traces. This paper presents a traces-generating framework based on TES (transform-expand-samples) and synthetic autoregressive Gaussian processes. The proposed scheme can fit both the probability density function and the autocorrelation of the empirical traces. Besides, the computation effort of this scheme is independent of the length of the LRD traces.

原文English
主出版物標題Proceedings - IEEE International Conference on Networks 2000
主出版物子標題Networking Trends and Challenges in the New Millennium, ICON 2000
頁數1
DOIs
出版狀態Published - 2000 十二月 1
事件2000 IEEE International Conference on Networks: Networking Trends and Challenges in the New Millennium, ICON 2000 - Singapore, Singapore
持續時間: 2000 九月 52000 九月 8

出版系列

名字IEEE International Conference on Networks, ICON
ISSN(列印)1556-6463

Other

Other2000 IEEE International Conference on Networks: Networking Trends and Challenges in the New Millennium, ICON 2000
國家/地區Singapore
城市Singapore
期間00-09-0500-09-08

All Science Journal Classification (ASJC) codes

  • 電腦網路與通信
  • 軟體
  • 電氣與電子工程
  • 安全、風險、可靠性和品質

指紋

深入研究「Modeling VBR traffic with autoregressive Gaussian processes」主題。共同形成了獨特的指紋。

引用此