MPT0B098, a novel microtubule inhibitor that destabilizes the hypoxia-inducible factor-1α mRNA through decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR

Yun Ching Cheng, Jing Ping Liou, Ching Chuan Kuo, Wen Yang Lai, Kuang Hsing Shih, Chi Yen Chang, Wen Yu Pan, Ta-Chien Tseng, Jang-Yang Chang

研究成果: Article

22 引文 斯高帕斯(Scopus)

摘要

Microtubule inhibitors have been shown to inhibit hypoxia-inducible factor-1α (HIF-1α) expression through inhibition translation or enhancing protein degradation. Little is known of the effect of microtubule inhibitors on the stability of HIF-1α mRNA. We recently discovered a novel indoline-sulfonamide compound, 7-arylindoline-1-benzene-sulfonamide (MPT0B098), as a potent microtubule inhibitor through binding to the colchicine-binding site of tubulin. MPT0B098 is active against the growth of various human cancer cells, including chemoresistant cells with IC50 values ranging from 70 to 150 nmol/L. However, normal cells, such as human umbilical vein endothelial cells (HUVEC), exhibit less susceptibility to the inhibitory effect of MPT0B098 with IC50 of 510 nmol/L. Similar to typical microtubule inhibitors, MPT0B098 arrests cells in the G2-M phase and subsequently induces cell apoptosis. In addition, MPT0B098 effectively suppresses VEGF-induced cell migration and capillary-like tube formation of HUVECs. Distinguished from other microtubule inhibitors, MPT0B098 not only inhibited the expression levels of HIF-1α protein but also destabilized HIF-1α mRNA. The mechanism of causing unstable of HIF-1α mRNA by MPT0B098 is through decreasing RNA-binding protein, HuR, translocation from the nucleus to the cytoplasm. Notably, MPT0B098 effectively suppresses tumor growth and microvessel density of tumor specimens in vivo. Taken together, our results provide a novel mechanism of inhibiting HIF-1α of a microtubule inhibitor MPT0B098. MPT0B098 is a promising anticancer drug candidate with potential for the treatment of human malignancies.

原文English
頁(從 - 到)1202-1212
頁數11
期刊Molecular Cancer Therapeutics
12
發行號7
DOIs
出版狀態Published - 2013 七月 1

    指紋

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

引用此