Mst3 involvement in na+ and k+ homeostasis with increasing dietary potassium intake

Chee Hong Chan, Sheng Nan Wu, Bo Ying Bao, Houng Wei Li, Te Ling Lu

研究成果: Article同行評審

5 引文 斯高帕斯(Scopus)

摘要

K+ loading inhibits NKCC2 (Na-K-Cl cotransporter) and NCC (Na-Cl cotransporter) in the early distal tubules, resulting in Na+ delivery to the late distal convoluted tubules (DCTs). In the DCTs, Na+ entry through ENaC (epithelial Na channel) drives K+ secretion through ROMK (renal outer medullary potassium channel). WNK4 (with-no-lysine 4) regulates the NCC/NKCC2 through SAPK (Ste20-related proline-alanine-rich kinase)/OSR1 (oxidative stress responsive). K+ loading increases intracellular Cl, which binds to the WNK4, thereby inhibiting autophosphoryla-tion and downstream signals. Acute K+ loading-deactivated NCC was not observed in Cl-insensitive WNK4 mice, indicating that WNK4 was involved in K+ loading-inhibited NCC ac-tivity. However, chronic K+ loading deactivated NCC in Cl-insensitive WNK4 mice, indicating that other mechanisms may be involved. We previously reported that mammalian Ste20-like protein kinase 3 (MST3/STK24) was expressed mainly in the medullary TAL (thick ascending tubule) and at lower levels in the DCTs. MST3−/− mice exhibited higher ENaC activity, causing hyper-natremia and hypertension. To investigate MST3 function in maintaining Na+/K+ homeostasis in kidneys, mice were fed diets containing various concentrations of Na+ and K+. The 2% KCl diets induced less MST3 expression in MST3−/− mice than that in wild-type (WT) mice. The MST3−/− mice had higher WNK4, NKCC2-S130 phosphorylation, and ENaC expression, resulting in lower urinary Na+ and K+ excretion than those of WT mice. Lower urinary Na+ excretion was associated with elevated plasma [Na+] and hypertension. These results suggest that MST3 maintains Na+/K+ ho-meostasis in response to K+ loading by regulation of WNK4 expression and NKCC2 and ENaC activity.

原文English
文章編號999
頁(從 - 到)1-15
頁數15
期刊International journal of molecular sciences
22
發行號3
DOIs
出版狀態Published - 2021 2月 1

All Science Journal Classification (ASJC) codes

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學

指紋

深入研究「Mst3 involvement in na+ and k+ homeostasis with increasing dietary potassium intake」主題。共同形成了獨特的指紋。

引用此