Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity

Fitri Nur Indah Sari, Gally Frenel, Alex Chinghuan Lee, Yan Jia Huang, Yen Hsun Su, Jyh Ming Ting

研究成果: Article同行評審

10 引文 斯高帕斯(Scopus)

摘要

In this study, we demonstrate multi-high valence 3d transition metal (TM) doping to boost the oxygen evolution reaction (OER) activity and stability of NiFe hydroxide. Self-supported NiFe hydroxides with multiple high valence 3d TM (V4+, V5+, Ti3+, Ti4+, Co3+, and Cr3+) doping are fabricated using a facile Ni-corrosion method at room temperature without the use of any additional oxidizing agent. The high-valence metal dopants effectively tune the electronic structure of Ni. In situ Raman, ex situ electron energy-loss spectroscopy, and density functional theory calculations reveal that Cr is advantageous for the formation of oxyhydroxide with the longest Ni-O bond length, facilitating the decomposition of *OOH intermediate species for the generation of O2. Additionally, Ti contributes to charge transfer. The optimized NiFe hydroxide with V, Ti, and Cr dopants (FNVTiCr) outperforms the benchmark RuO2 and reported Ni-based catalyst by exhibiting an overpotential of 240 mV at 100 mA cm−2 and stability for 70 h. Notably, an alkaline electrolyzer with an FNVTiCr anode and Pt/C cathode is also demonstrated with an ultralow cell voltage of 1.49 V to generate a current density of 10 mA cm−2, which is stable for 100 h, surpassing the benchmark industrial catalyst. This multi-high valence 3d TM doping approach provides a strategy for designing a low-cost, effective, and stable Ni-based catalyst.

原文English
頁(從 - 到)2985-2995
頁數11
期刊Journal of Materials Chemistry A
11
發行號6
DOIs
出版狀態Published - 2023 1月 12

All Science Journal Classification (ASJC) codes

  • 一般化學
  • 可再生能源、永續發展與環境
  • 一般材料科學

指紋

深入研究「Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity」主題。共同形成了獨特的指紋。

引用此