Multi-view fuzzy information fusion in collaborative filtering recommender systems: Application to the urban resilience domain

Iván Palomares, Fiona Browne, Peadar Davis

研究成果: Article同行評審

15 引文 斯高帕斯(Scopus)

摘要

Recommender systems play an increasingly important role in on-line web services for the personalization and recommendation of content to individual users. The quantity and quality of user-based information has progressed presenting the opportunity to further tailor recommendations to users based on feature view integration. In this work, we propose a hybrid framework which combines a collaborative filtering recommendation system with fuzzy decision-making approaches (based on the use of aggregation functions) to improve the accuracy of domain-specific recommendations. We extend upon the classical, neighborhood-based collaborative filtering process by conflating preference information with user-profile data in the recommendation process. This is performed using intelligent information fusion techniques whereby Ordered Weighted Averaging (OWA) operators and uninorm aggregation functions are implemented in the fusion of multiple views of pairwise similarity degrees between users. To address the shortcoming of generating sensible recommendations to cold users, we incorporate a novel weighting scheme based on fuzzy set modeling within the uninorm-based aggregation of similarity views. We finally outline the application of the proposed approach through an empirical study based in the Urban Resilience domain, along with an example to movie recommendation.

原文English
頁(從 - 到)64-80
頁數17
期刊Data and Knowledge Engineering
113
DOIs
出版狀態Published - 2018 1月

All Science Journal Classification (ASJC) codes

  • 資訊系統與管理

指紋

深入研究「Multi-view fuzzy information fusion in collaborative filtering recommender systems: Application to the urban resilience domain」主題。共同形成了獨特的指紋。

引用此