Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection

研究成果: Article同行評審

摘要

Objective: Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. The source code is available at https://github.com/nchucvml/MFADNet after acceptance. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

原文English
頁(從 - 到)394-404
頁數11
期刊IEEE Journal of Translational Engineering in Health and Medicine
11
DOIs
出版狀態Published - 2023

All Science Journal Classification (ASJC) codes

  • 生物醫學工程

指紋

深入研究「Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection」主題。共同形成了獨特的指紋。

引用此