Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability

Hsiao Lin Lee, Chih Kang Chang, Wen Yih Jeng, Andrew H.J. Wang, Po Huang Liang

研究成果: Article同行評審

76 引文 斯高帕斯(Scopus)

摘要

β-Glucosidase (EC 3.2.1.21) plays an essential role in biofuel production since it can cleave β-1,4-glycosidic bond to convert cellobiose into fermentable glucose. Based on the structure of Trichoderma reesei β-glucosidase 2 (TrBgl2) we solved, the amino acids in the outer channel of active site were mutated in this study. Mutants P172L and P172L/F250A showed the most enhanced kcat/Km and kcat values by 5.3- and 6.9-fold, respectively, compared to the wild type (WT) toward 4-nitrophenyl-β-d-glucopyranoside (p-NPG) substrate at 40°C. L167W and P172L/F250A mutations resulted in shift of optimal temperature to 50°C, at which WT was almost inactive. However, thin-layer chromatography analysis revealed that mutant L167W had the best synergism with T. reesei cellulases on degrading cellulosic substrates into glucose. This study enhances our understanding on the roles of amino acids in the substrate entrance region away from the active site and provides engineered T. reesei β-glucosidases with better activity and/or thermostability to hydrolyze cellobiose.

原文English
頁(從 - 到)733-740
頁數8
期刊Protein Engineering, Design and Selection
25
發行號11
DOIs
出版狀態Published - 2012 11月

All Science Journal Classification (ASJC) codes

  • 生物技術
  • 生物工程
  • 生物化學
  • 分子生物學

指紋

深入研究「Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability」主題。共同形成了獨特的指紋。

引用此