NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation

Wan Yu Huang, Shankung Lin, Hsuan Ying Chen, Ya Ping Chen, Ting Yu Chen, Kuei Sen Hsu, Hung Ming Wu

研究成果: Article同行評審

40 引文 斯高帕斯(Scopus)

摘要

Background: Systemic inflammation associated with sepsis can induce neuronal hyperexcitability, leading to enhanced seizure predisposition and occurrence. Brain microglia are rapidly activated in response to systemic inflammation and, in this activated state, release multiple cytokines and signaling factors that amplify the inflammatory response and increase neuronal excitability. NADPH oxidase (NOX) enzymes promote microglial activation through the generation of reactive oxygen species (ROS), such as superoxide anion. We hypothesized that NOX isoforms, particularly NOX2, are potential targets for prevention of sepsis-associated seizures. Methods: To reduce NADPH oxidase 2-derived ROS production, mice with deficits of NOX regulatory subunit/NOX2 organizer p47 phox (p47 phox-/- ) or NOX2 major subunit gp91 phox (gp91 phox-/- ) were used or the NOX2-selective inhibitor diphenyleneiodonium (DPI) was used to treat wild-type (WT) mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS). Seizure susceptibility was compared among mouse groups in response to intraperitoneal injection of pentylenetetrazole (PTZ). Brain tissues were assayed for proinflammatory gene and protein expression, and immunofluorescence staining was used to estimate the proportion of activated microglia. Results: Increased susceptibility to PTZ-induced seizures following sepsis was significantly attenuated in gp91 phox-/- and p47 phox-/- mice compared with WT mice. Both gp91 phox-/- and p47 phox-/- mice exhibited reduced microglia activation and lower brain induction of multiple proconvulsive cytokines, including TNFα, IL-1β, IL-6, and CCL2, compared with WT mice. Administration of DPI following LPS injection significantly attenuated the increased susceptibility to PTZ-induced seizures and reduced both microglia activation and brain proconvulsive cytokine concentrations compared with vehicle-treated controls. DPI also inhibited the upregulation of gp91 phox transcripts following LPS injection. Conclusions: Our results indicate that NADPH oxidases contribute to the development of increased seizure susceptibility in mice after sepsis. Pharmacologic inhibition of NOX may be a promising therapeutic approach to reducing sepsis-associated neuroinflammation, neuronal hyperexcitability, and seizures.

原文English
文章編號140
期刊Journal of Neuroinflammation
15
發行號1
DOIs
出版狀態Published - 2018 5月 12

All Science Journal Classification (ASJC) codes

  • 一般神經科學
  • 免疫學
  • 神經內科
  • 細胞與分子神經科學

指紋

深入研究「NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation」主題。共同形成了獨特的指紋。

引用此