TY - CHAP
T1 - Nanoindentation and indentation size effects
T2 - Continuum model and atomistic simulation
AU - Yu, Chi Hua
AU - Lin, Kuan Po
AU - Chen, Chuin Shan
N1 - Publisher Copyright:
© Springer Nature Singapore Pte Ltd. 2019.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Nanoindentation is one of the most widely used methods to measure the mechanical properties of materials at the nanoscale. For spherical indenters, when radius decreases, the hardness increases. The phenomenon is known as the indentation size effect (ISE). Nix and Gao developed a continuum model to explain the ISE in microindentation. However, the model overestimates the hardness at the nanoscale. The objective of this study is to develop proper methods to probe key quantities such as hardness and geometric necessary dislocation (GND) density from the quasi-static version of molecular dynamics (MD) simulations and to develop a mechanism-based model to elucidate the ISE phenomenon at the nanoscale. A reliable method is presented to extract the GND directly from dislocation length and the volume of plastic zone in the MD simulations. We conclude that the hardness determined directly from MD simulations matches well with the hardness determined from the Oliver-Pharr method. The ISE can be observed directly from the MD simulations without any free parameters. The model by Swadener et al. rooted from the Nix and Gao model underestimates the GND density at the nanoscale. However, this model can accurately predict the hardness size effects in nanoindentation if it uses the GND density directly calculated from the MD simulations.
AB - Nanoindentation is one of the most widely used methods to measure the mechanical properties of materials at the nanoscale. For spherical indenters, when radius decreases, the hardness increases. The phenomenon is known as the indentation size effect (ISE). Nix and Gao developed a continuum model to explain the ISE in microindentation. However, the model overestimates the hardness at the nanoscale. The objective of this study is to develop proper methods to probe key quantities such as hardness and geometric necessary dislocation (GND) density from the quasi-static version of molecular dynamics (MD) simulations and to develop a mechanism-based model to elucidate the ISE phenomenon at the nanoscale. A reliable method is presented to extract the GND directly from dislocation length and the volume of plastic zone in the MD simulations. We conclude that the hardness determined directly from MD simulations matches well with the hardness determined from the Oliver-Pharr method. The ISE can be observed directly from the MD simulations without any free parameters. The model by Swadener et al. rooted from the Nix and Gao model underestimates the GND density at the nanoscale. However, this model can accurately predict the hardness size effects in nanoindentation if it uses the GND density directly calculated from the MD simulations.
UR - http://www.scopus.com/inward/record.url?scp=85085446818&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085446818&partnerID=8YFLogxK
U2 - 10.1007/978-981-10-6884-3_26
DO - 10.1007/978-981-10-6884-3_26
M3 - Chapter
AN - SCOPUS:85085446818
SN - 9789811068836
SP - 759
EP - 794
BT - Handbook of Mechanics of Materials
PB - Springer Singapore
ER -