Nickel-plated sulfur nanocomposites for electrochemically stable high-loading sulfur cathodes in a lean-electrolyte lithium-sulfur cell

Cun Sheng Cheng, Sheng Heng Chung

研究成果: Article同行評審

14 引文 斯高帕斯(Scopus)

摘要

An electrochemical sulfur cathode is attractive due to its high theoretical charge-storage capacity, low cost, and natural abundance. For practical viability, a high-performance sulfur cathode with a sufficient sulfur loading/content and stable electrochemical utilization must be developed. However, the satisfaction of these two essential requirements has been proven to be in opposition to each other due to the insulating nature of sulfur and the repeated conversion between solid-/liquid-state active materials that damage the electrochemical efficiency and reversibility. To address these problems, in this work we demonstrate the chemical plating of conductive and electrocatalytic nickel onto sulfur particles to form an electroless-nickel-plated sulfur nanocomposite. This cathode material features a lightweight nickel nanoshell on the surface of the sulfur particles, which enables high electrochemical utilization and kinetics with a high charge-storage capacity (1,008 mA∙h g−1) and excellent rate performance (C/20–C/2). The nickel nanoshell chemically traps and catalyzes the liquid-state active material, resulting in stable long-term cyclability for 200 cycles at various rates. These improved electrochemical characteristics are realized by the enhanced battery properties simultaneously reaching up to a high sulfur loading (14 mg cm−2) and a high sulfur content (74 wt%) with a low electrolyte-to-sulfur ratio (7 µL mg−1). With the capability to utilize and stabilize such a high amount of sulfur, the electroless-nickel-plated sulfur cathode demonstrates enhanced areal/gravimetric capacities along with high energy densities (13–28 mW∙h cm−2) that are comparable to those of the current available lithium-ion oxide cathodes (10–14 mW∙h cm−2).

原文English
文章編號132257
期刊Chemical Engineering Journal
429
DOIs
出版狀態Published - 2022 2月 1

All Science Journal Classification (ASJC) codes

  • 化學 (全部)
  • 環境化學
  • 化學工程 (全部)
  • 工業與製造工程

指紋

深入研究「Nickel-plated sulfur nanocomposites for electrochemically stable high-loading sulfur cathodes in a lean-electrolyte lithium-sulfur cell」主題。共同形成了獨特的指紋。

引用此