TY - GEN
T1 - Nonlinear water waves propagating on a sloping bottom in Lagrangian coordinates
AU - Chen, Yang Yih
AU - Li, Meng-Syue
AU - Hsu, Hung Chu
AU - Yang, Kuei Sen
PY - 2009/12/1
Y1 - 2009/12/1
N2 - A new asymptotic solution describing nonlinear water wave propagation on the surface of a uniform sloping bottom is derived in the Lagrangian coordinates. We use the two-parameter perturbation method to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear ordering parameter ε and the bottom slope α perturbed to second order. The analytical solution in Lagrangian form satisfies the zero pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. Then, the solution is used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution enables the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to breaking. The nonlinear analytical solution is verified by reducing to the Lagrangian second-order solution of progressive waves in both the limit of deep water and of constant water.
AB - A new asymptotic solution describing nonlinear water wave propagation on the surface of a uniform sloping bottom is derived in the Lagrangian coordinates. We use the two-parameter perturbation method to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear ordering parameter ε and the bottom slope α perturbed to second order. The analytical solution in Lagrangian form satisfies the zero pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. Then, the solution is used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution enables the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to breaking. The nonlinear analytical solution is verified by reducing to the Lagrangian second-order solution of progressive waves in both the limit of deep water and of constant water.
UR - http://www.scopus.com/inward/record.url?scp=74549217469&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=74549217469&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:74549217469
SN - 9781880653531
T3 - Proceedings of the International Offshore and Polar Engineering Conference
SP - 1049
EP - 1056
BT - The Proceedings of the 19th (2009) International OFFSHORE AND POLAR ENGINEERING CONFERENCE
T2 - 19th (2009) International OFFSHORE AND POLAR ENGINEERING CONFERENCE
Y2 - 21 June 2009 through 26 June 2009
ER -