TY - JOUR
T1 - Numerical analyses of operator-splitting algorithms for the two-dimensional advection-diffusion equation
AU - Khan, Liaqat Ali
AU - Liu, Philip L.F.
N1 - Funding Information:
The researchr eportedi n this paper was in part supportedb y a researchg rant from the Xerox Corporation to Cornell University. During the course of study, LAK has also been supportedb y a Fellowship from the DeFrees Foundation. This research was conducted using the Cornell National SupercomputerF acility, which receives major funding from the National Science Foundation and IBM Corporation, and with additional support from New York State and members of the Corporate Research Institute.
PY - 1998/1/24
Y1 - 1998/1/24
N2 - Holly and Preissmann's (HP) scheme has been the basis of a large number of operator splitting algorithms for the solution of the advection-diffusion equation. However, these algorithms, including HP, are first-order accurate in time due to splitting errors. Error analyses of these algorithms, incorporating splitting error and errors resulting from numerical solutions of the split advection and diffusion equations, are lacking. In this paper, error analysis of a second-order accurate adaptation of the HP scheme (AHP) is presented for the two-dimensional advection-diffusion equation. A modified AHP scheme (MAHP) is suggested to remove the ad-hoc nature of boundary conditions during the diffusion step of computations in both HP and AHP. As boundary conditions specified for the advection-diffusion equation are not applicable to the split equations, second-order accurate boundary conditions for the split advection and diffusion equations are derived. An analysis of numerical dispersion and dissipation associated with the numerical procedure for the advection equation is presented. The analysis establishes a criterion so that computational errors are small in two-dimensional advection dominated transport problems. Several numerical examples are presented to verify the numerical analyses presented in the paper. In addition, a review of the current status of operator splitting algorithms for the advection-diffusion equation is presented. The objective of the review is to identify the issues that have not been addressed in the previous studies.
AB - Holly and Preissmann's (HP) scheme has been the basis of a large number of operator splitting algorithms for the solution of the advection-diffusion equation. However, these algorithms, including HP, are first-order accurate in time due to splitting errors. Error analyses of these algorithms, incorporating splitting error and errors resulting from numerical solutions of the split advection and diffusion equations, are lacking. In this paper, error analysis of a second-order accurate adaptation of the HP scheme (AHP) is presented for the two-dimensional advection-diffusion equation. A modified AHP scheme (MAHP) is suggested to remove the ad-hoc nature of boundary conditions during the diffusion step of computations in both HP and AHP. As boundary conditions specified for the advection-diffusion equation are not applicable to the split equations, second-order accurate boundary conditions for the split advection and diffusion equations are derived. An analysis of numerical dispersion and dissipation associated with the numerical procedure for the advection equation is presented. The analysis establishes a criterion so that computational errors are small in two-dimensional advection dominated transport problems. Several numerical examples are presented to verify the numerical analyses presented in the paper. In addition, a review of the current status of operator splitting algorithms for the advection-diffusion equation is presented. The objective of the review is to identify the issues that have not been addressed in the previous studies.
UR - http://www.scopus.com/inward/record.url?scp=0031677005&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031677005&partnerID=8YFLogxK
U2 - 10.1016/S0045-7825(97)00127-8
DO - 10.1016/S0045-7825(97)00127-8
M3 - Article
AN - SCOPUS:0031677005
SN - 0045-7825
VL - 152
SP - 337
EP - 359
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
IS - 3-4
ER -