Numerical characterization on concentration polarization of hydrogen permeation in a Pd-based membrane tube

Wei Hsin Chen, Wei Ze Syu, Chen I. Hung

研究成果: Article同行評審

37 引文 斯高帕斯(Scopus)


Sieverts' law has been extensively employed to evaluate hydrogen permeation rate across a hydrogen-permeable membrane based on the concept of continuous stirred tank reactor (CSTR). However, when the hydrogen permeation rate is high to a certain extent, concentration polarization will appear in a membrane tube which results in the deviation of hydrogen permeation rate from Sieverts' law. Under such a situation, the nature of mass transfer in a membrane tube is characterized by plug flow reactor (PFR) rather than CSTR. To figure out the feasibility of Sieverts' law, a two-dimensional numerical method is developed to simulate the phenomena of concentration polarization for hydrogen permeation in a Pd-based membrane tube. Four important parameters affecting hydrogen permeation are taken into account; they include the pressure difference, H 2 molar fraction in the influence, Reynolds number and membrane permeance. The predictions indicate that increasing pressure difference or membrane permeance facilitates H2 permeation rate; concentration polarization is thus triggered. Alternatively, when Reynolds number or H 2 molar fraction decreases along with a higher permeance, the deviation of PFR from CSTR grows, even though H2 permeation rate declines. From the obtained results, it is concluded that the H2 permeation rate can be predicted by Sieverts' law if the H2 permeation ratio is no larger than 30%.

頁(從 - 到)14734-14744
期刊International Journal of Hydrogen Energy
出版狀態Published - 2011 11月

All Science Journal Classification (ASJC) codes

  • 可再生能源、永續發展與環境
  • 燃料技術
  • 凝聚態物理學
  • 能源工程與電力技術


深入研究「Numerical characterization on concentration polarization of hydrogen permeation in a Pd-based membrane tube」主題。共同形成了獨特的指紋。