Numerical solution of two-dimensional nonlinear hyperbolic heat conduction problems

Han Taw Chen, Jae Yuh Lin

研究成果: Article同行評審

25 引文 斯高帕斯(Scopus)

摘要

Two-dimensional hyperbolic heat conduction (HHC) problems with temperature-dependent thermal properties are investigated numerically. The present numerical method involves the hybrid application of the Laplace transform and control-volume methods. The Laplace transform technique is used to remove time-dependent terms, and then the transformed equation is discretized in the space domain by the control-volume formulation. Nonlinear terms induced by temperature-dependent thermal properties are linearized by using the Taylor's series approximation. In general, the numerical solution of the HHC problem has the phenomenon of the jump discontinuity in the vicinity of the thermal wave front. This phenomenon easily causes numerical oscillations in this region. In order to suppress these numerical oscillations, the selection of shape functions is an important task in the present study. The bi-hyperbolic shape function is introduced in the present control-volume formulation. Three examples involving a problem with an irregular geometry are illustrated to demonstrate the accuracy and stability of the present numerical method for such problems.

原文English
頁(從 - 到)287-307
頁數21
期刊Numerical Heat Transfer, Part B: Fundamentals
25
發行號3
DOIs
出版狀態Published - 1994

All Science Journal Classification (ASJC) codes

  • 數值分析
  • 建模與模擬
  • 凝聚態物理學
  • 材料力學
  • 電腦科學應用

指紋

深入研究「Numerical solution of two-dimensional nonlinear hyperbolic heat conduction problems」主題。共同形成了獨特的指紋。

引用此