摘要
Given a graph G and a non-negative integer g , the g-extra connectivity (resp. g-extra edge connectivity) of G is the minimum cardinality of a set of vertices (resp. edges) in G , if it exists, whose deletion disconnects G and leaves each remaining component with more than g vertices. This study shows that the 3-extra connectivity (resp. 3-extra edge connectivity) of an n-dimensional folded hypercube is 4 n-5 for n ≥ 6 (resp. 4 n-4 for n ≥ 5). This study also provides an upper bound for the g-extra connectivity on folded hypercubes for g ≥ 6.
原文 | English |
---|---|
文章編號 | 6409834 |
頁(從 - 到) | 1594-1600 |
頁數 | 7 |
期刊 | IEEE Transactions on Computers |
卷 | 63 |
發行號 | 6 |
DOIs | |
出版狀態 | Published - 2014 6月 |
All Science Journal Classification (ASJC) codes
- 軟體
- 理論電腦科學
- 硬體和架構
- 計算機理論與數學