On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes

Nai Wen Chang, Cheng Yen Tsai, Sun Yuan Hsieh

研究成果: Article同行評審

99 引文 斯高帕斯(Scopus)

摘要

Given a graph G and a non-negative integer g , the g-extra connectivity (resp. g-extra edge connectivity) of G is the minimum cardinality of a set of vertices (resp. edges) in G , if it exists, whose deletion disconnects G and leaves each remaining component with more than g vertices. This study shows that the 3-extra connectivity (resp. 3-extra edge connectivity) of an n-dimensional folded hypercube is 4 n-5 for n ≥ 6 (resp. 4 n-4 for n ≥ 5). This study also provides an upper bound for the g-extra connectivity on folded hypercubes for g ≥ 6.

原文English
文章編號6409834
頁(從 - 到)1594-1600
頁數7
期刊IEEE Transactions on Computers
63
發行號6
DOIs
出版狀態Published - 2014 6月

All Science Journal Classification (ASJC) codes

  • 軟體
  • 理論電腦科學
  • 硬體和架構
  • 計算機理論與數學

指紋

深入研究「On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes」主題。共同形成了獨特的指紋。

引用此