TY - JOUR
T1 - On a conjecture regarding the symmetric difference of certain sets
AU - Ke, W. F.
AU - Meyer, J. H.
N1 - Publisher Copyright:
© The Author(s), 2024.
PY - 2024
Y1 - 2024
N2 - Let n be a positive integer and n = {1, 2, . . . , n}. A conjecture arising from certain polynomial near-ring codes states that if k ≤ 1 and a1, a2, . . . , ak are distinct positive integers, then the symmetric difference a1n δ a2n δ δ akn contains at least n elements. Here, ain = {ai, 2ai, . . . , nai} for each i. We prove this conjecture for arbitrary n and for k = 1, 2, 3.
AB - Let n be a positive integer and n = {1, 2, . . . , n}. A conjecture arising from certain polynomial near-ring codes states that if k ≤ 1 and a1, a2, . . . , ak are distinct positive integers, then the symmetric difference a1n δ a2n δ δ akn contains at least n elements. Here, ain = {ai, 2ai, . . . , nai} for each i. We prove this conjecture for arbitrary n and for k = 1, 2, 3.
UR - http://www.scopus.com/inward/record.url?scp=85207135393&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85207135393&partnerID=8YFLogxK
U2 - 10.1017/S0004972724000807
DO - 10.1017/S0004972724000807
M3 - Article
AN - SCOPUS:85207135393
SN - 0004-9727
JO - Bulletin of the Australian Mathematical Society
JF - Bulletin of the Australian Mathematical Society
ER -