On Stekloff eigenvalue problem

Roger Chen, Chiung Jue Sung

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

Let (Mn, g) be a smooth compact Riemannian manifold with boundary ∂M ≠ 0. In this article we discuss the first positive eigenvalue of the Stekloff eigenvalue problem {(-Δ + q)u(x) = 0 in M ∂u/∂v = λu on ∂M, where q(x) is a C2 function defined on M, ∂vg is the normal derivative with respect to the unit outward normal vector on the boundary ∂M. In particular, when the boundary ∂M satisfies the "interior rolling R-ball" condition, we obtain a positive lower bound for the first nonzero eigenvalue in terms of n, the diameter of M, R, the lower bound of the Ricci curvature, the lower bound of the second fundamental form elements, and the tangential derivatives of the second fundamental form elements.

原文English
頁(從 - 到)277-296
頁數20
期刊Pacific Journal of Mathematics
195
發行號2
DOIs
出版狀態Published - 2000 十月

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

指紋 深入研究「On Stekloff eigenvalue problem」主題。共同形成了獨特的指紋。

引用此