On the sensitivity of typhoon wave simulations to tidal elevation and current

Shih Chun Hsiao, Han Lun Wu, Wei Bo Chen, Chih Hsin Chang, Lee Yaw Lin

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)


The sensitivity of storm wave simulations to storm tides and tidal currents was investigated using a high-resolution, unstructured-grid, coupled circulation-wave model (Semi-implicit Cross-scale Hydroscience Integrated System Model Wind Wave Model version III (SCHISM-WWM-III)) driven by two typhoon events (Typhoons Soudelor and Megi) impacting the northeastern coast of Taiwan. Hourly wind fields were acquired from a fifth-generation global atmospheric reanalysis (ERA5) and were used as meteorological conditions for the circulation-wave model after direct modification (MERA5). The large typhoon-induced waves derived from SCHISM-WWM-III were significantly improved with the MERA5 winds, and the peak wave height was increased by 1.0-2.0 m. A series of numerical experiments were conducted with SCHISM-WWM-II and MERA5 to explore the responses of typhoon wave simulations to tidal elevation and current. The results demonstrate that the simulated significant wave height, mean wave period and wave direction for a wave buoy in the outer region of the typhoon are more sensitive to the tidal current but less sensitive to the tidal elevation than those for a wave buoy moored in the inner region of the typhoon. This study suggests that the inclusion of the tidal current and elevation could be more important for typhoon wave modeling in sea areas with larger tidal ranges and higher tidal currents. Additionally, the suitable modification of the typhoon winds from a global atmospheric reanalysis is necessary for the accurate simulation of storm waves over the entire region of a typhoon.

期刊Journal of Marine Science and Engineering
出版狀態Published - 2020 9月

All Science Journal Classification (ASJC) codes

  • 土木與結構工程
  • 水科學與技術
  • 海洋工程


深入研究「On the sensitivity of typhoon wave simulations to tidal elevation and current」主題。共同形成了獨特的指紋。