Operating pH influences homogeneous calcium carbonate granulation in the frame of CO2 capture

Mark Daniel G. de Luna, Arianne S. Sioson, Angelo Earvin Sy Choi, Ralf Ruffel M. Abarca, Yao Hui Huang, Ming Chun Lu

研究成果: Article同行評審

8 引文 斯高帕斯(Scopus)


The era of industrialization has caused the drastic increase in atmospheric carbon dioxide concentrations that now require various remediation strategies such as CO2 capture and storage. In this study, calcium carbonate granulation is proposed as a new conversion route for CO2 trapped in water matrices into dense solids. Herein, we demonstrate the effectiveness of the fluidized-bed reactor to produce compact calcium carbonate pellets from captured CO2 via a granulation reaction at different pH conditions and in the absence of seed materials. Constant values of calcium-to-carbonate ratio, influent carbonate concentration and influx flow rate were used while operating pH was varied from 8.5 to 11.0. Optimal operating condition with carbonate removal and granulation efficiencies of 92% and 90%, respectively was found at pH of 10.0 ± 0.2, where the lowest daily effluent concentration of carbonate ions was measured at 16.6 mg L−1 via the alkalinity test. At optimum operating pH, large compact granules ranging from 1 – 2 mm in diameter (∼93.6 g) were obtained with overall particle size distribution leaning towards bigger sizes. Morphological analyses of the granules revealed their smooth surfaces and subrounded shapes, while crystalline and elemental analyses identified these as high purity calcium carbonate. Moreover, spontaneous homogeneous nucleation, particle aggregation, crystal growth and granulation are proposed as the main mechanisms of calcium carbonate granulation.

期刊Journal of Cleaner Production
出版狀態Published - 2020 11月 1

All Science Journal Classification (ASJC) codes

  • 可再生能源、永續發展與環境
  • 環境科學 (全部)
  • 策略與管理
  • 工業與製造工程


深入研究「Operating pH influences homogeneous calcium carbonate granulation in the frame of CO2 capture」主題。共同形成了獨特的指紋。