Optimal task clustering using Hopfield net

Weiping Zhu, Tyng Yeu Liang, Ce Kuen Shieh

研究成果: Conference contribution

1 引文 斯高帕斯(Scopus)

摘要

To achieve high performance in a distributed system, the tasks of a program have to be carefully clustered and assigned to processors. In this paper we present a static method to cluster tasks and allocate them to processors. The proposed method relies on the Hopfield neural network to achieve optimum or near-optimum task clustering in terms of load balancing and communication cost. Experimental studies show that this method indeed can find optimal or near-optimal mapping for those programs used in our tests.

原文English
主出版物標題1997 3rd International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 1997
編輯Wanlei Zhou, Andrzej Goscinski, Michael Hobbs
發行者Institute of Electrical and Electronics Engineers Inc.
頁面451-464
頁數14
ISBN(電子)0780342291, 9780780342293
DOIs
出版狀態Published - 1997
事件3rd International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 1997 - Melbourne, Australia
持續時間: 1997 12月 101997 12月 12

出版系列

名字1997 3rd International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 1997

Other

Other3rd International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 1997
國家/地區Australia
城市Melbourne
期間97-12-1097-12-12

All Science Journal Classification (ASJC) codes

  • 電腦網路與通信
  • 硬體和架構
  • 訊號處理

指紋

深入研究「Optimal task clustering using Hopfield net」主題。共同形成了獨特的指紋。

引用此