Optimization and drying kinetics of the convective drying of microalgal biomat (lab-lab)

Alvin B. Culaba, Aristotle T. Ubando, Andres Philip Mayol, Charles Felix, Andre Marvin A. Calapatia, Jayne Lois San Juan

研究成果: Conference contribution

摘要

Lab-lab, a periphyton that is composed of several microorganisms, is a potential commercial fish feed in the aquaculture industry due to its high protein content. However, the bottleneck in utilizing lab-lab as a fish feed is its cultivation process; it can only be mass produced during the dry season when the solar irradiation is high. To induce the availability of lab-lab all throughout the year, its moisture can be removed through drying, which will reduce its spoilage and will improve its product life. To effectively dry lab-lab with reduced operating costs and improved protein yield, its drying characteristics are investigated. In this study, lab-lab samples are dried in a convection oven dryer. A 3-factor, 2- level full-factorial design of experiment is used wherein the factors considered are drying temperature (60-100 °C) and the sample thickness (2-4 mm), and the responses that are observed are the drying time, drying rate and energy consumption. Mass data is instantaneously monitored using an Arduino-controlled load cell that is placed inside the convection oven dryer. A modified Aghbashlo model was used to represent the convective drying curve of lab-lab with low RMSE values (< 1.3196%) and high R2 values (>0.9988) at a significance level of 0.05. The effects of the factors on the drying time (p<.0152), drying rate (p<0.0174), and energy consumption (p<0.0393) are investigated, consisting only of one- degree effects with no interactions. Using the desirability function, the optimal temperature and thickness, where the drying time and drying rate are maximized while the energy consumption is minimized, is at 60°C and 3.45 mm with a desirability of 56.76%.

原文English
主出版物標題2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2019
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728130446
DOIs
出版狀態Published - 2019 十一月
事件11th IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2019 - Laoag, Philippines
持續時間: 2019 十一月 292019 十二月 1

出版系列

名字2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2019

Conference

Conference11th IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2019
國家Philippines
城市Laoag
期間19-11-2919-12-01

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Information Systems and Management
  • Electrical and Electronic Engineering
  • Management, Monitoring, Policy and Law
  • Control and Optimization

指紋 深入研究「Optimization and drying kinetics of the convective drying of microalgal biomat (lab-lab)」主題。共同形成了獨特的指紋。

引用此