Optimum parameter design for performance of methanol steam reformer combining Taguchi method with artificial neural network and genetic algorithm

Kwan Ouyang, Horng Wen Wu, Shun Chieh Huang, Sheng Ju Wu

研究成果: Article同行評審

14 引文 斯高帕斯(Scopus)

摘要

The fuel cell is powered by H2 widely provided by reforming processes. A promising reforming process is methanol steam reforming which has received much attention. This study then attempts to acquire high hydrogen concentration, high methanol conversion efficiency and low CO concentration of methanol steam reforming. Three operating parameters were investigated: reacting temperature (T = 220–280 °C), steam-to-carbonate ratio (S/C = 0.9 to 1.1), and the volume flow rate for nitrogen (N2) carrier gas (Q=40 to 100cm3/min) as the flow rate of aqueous methanol solution was set as 3.1 cm3/min. The integrated approach of combining the Taguchi method with radial basis function neural network (RBFNN) was proposed in this study to demand an optimum parameter design. The results showed that the optimum parameter design was: T = 267 °C, S/C = 1.1, and Q=40cm3/min. The averaged percentage reduction of quality loss (PRQL) of 3.31% was obtained as optimum condition was implemented, in comparison with the starting condition (the largest reacting temperature, steam-to-carbonate ratio, and N2 volume flow rate). In addition, principal component analysis (PCA) is also investigated. The results obtained by PCA were compared with the ones by the integrated approach.

原文English
頁(從 - 到)446-458
頁數13
期刊Energy
138
DOIs
出版狀態Published - 2017

All Science Journal Classification (ASJC) codes

  • 土木與結構工程
  • 建築與營造
  • 建模與模擬
  • 可再生能源、永續發展與環境
  • 燃料技術
  • 能源工程與電力技術
  • 污染
  • 能源(全部)
  • 機械工業
  • 工業與製造工程
  • 管理、監督、政策法律
  • 電氣與電子工程

指紋

深入研究「Optimum parameter design for performance of methanol steam reformer combining Taguchi method with artificial neural network and genetic algorithm」主題。共同形成了獨特的指紋。

引用此