Orbifold Gromov-Witten theory of the symmetric product of A r

Wan Keng Cheong, Amin Gholampour

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

Let A r be the minimal resolution of the type A r surface singularity. We study the equivariant orbifold Gromov-Witten theory of the n-fold symmetric product stack [Sym n(A r)] of A r. We calculate the divisor operators, which turn out to determine the entire theory under a nondegeneracy hypothesis. This, together with the results of Maulik and Oblomkov, shows that the Crepant Resolution Conjecture for Sym n(A r) is valid. More strikingly, we complete a tetrahedron of equivalences relating the Gromov-Witten theories of [Sym n(A r)]/Hilb n(A r) and the relative Gromov-Witten/Donaldson-Thomas theories of A r × P 1.

原文English
頁(從 - 到)475-527
頁數53
期刊Geometry and Topology
16
發行號1
DOIs
出版狀態Published - 2012 3月 29

All Science Journal Classification (ASJC) codes

  • 幾何和拓撲

指紋

深入研究「Orbifold Gromov-Witten theory of the symmetric product of A r」主題。共同形成了獨特的指紋。

引用此