TY - JOUR
T1 - Osteochondral tissue regeneration using a tyramine-modified bilayered plga scaffold combined with articular chondrocytes in a porcine model
AU - Lin, Tzu Hsiang
AU - Wang, Hsueh Chun
AU - Cheng, Wen Hui
AU - Hsu, Horng Chaung
AU - Yeh, Ming Long
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/1/2
Y1 - 2019/1/2
N2 - Repairing damaged articular cartilage is challenging due to the limited regenerative capacity of hyaline cartilage. In this study, we fabricated a bilayered poly (lactic-co-glycolic acid) (PLGA) scaffold with small (200–300 µm) and large (200–500 µm) pores by salt leaching to stimulate chondrocyte differentiation, cartilage formation, and endochondral ossification. The scaffold surface was treated with tyramine to promote scaffold integration into native tissue. Porcine chondrocytes retained a round shape during differentiation when grown on the small pore size scaffold, and had a fibroblast-like morphology during transdifferentiation in the large pore size scaffold after five days of culture. Tyramine-treated scaffolds with mixed pore sizes seeded with chondrocytes were pressed into three-mm porcine osteochondral defects; tyramine treatment enhanced the adhesion of the small pore size scaffold to osteochondral tissue and increased glycosaminoglycan and collagen type II (Col II) contents, while reducing collagen type X (Col X) production in the cartilage layer. Col X content was higher for scaffolds with a large pore size, which was accompanied by the enhanced generation of subchondral bone. Thus, chondrocytes seeded in tyramine-treated bilayered scaffolds with small and large pores in the upper and lower parts, respectively, can promote osteochondral regeneration and integration for articular cartilage repair.
AB - Repairing damaged articular cartilage is challenging due to the limited regenerative capacity of hyaline cartilage. In this study, we fabricated a bilayered poly (lactic-co-glycolic acid) (PLGA) scaffold with small (200–300 µm) and large (200–500 µm) pores by salt leaching to stimulate chondrocyte differentiation, cartilage formation, and endochondral ossification. The scaffold surface was treated with tyramine to promote scaffold integration into native tissue. Porcine chondrocytes retained a round shape during differentiation when grown on the small pore size scaffold, and had a fibroblast-like morphology during transdifferentiation in the large pore size scaffold after five days of culture. Tyramine-treated scaffolds with mixed pore sizes seeded with chondrocytes were pressed into three-mm porcine osteochondral defects; tyramine treatment enhanced the adhesion of the small pore size scaffold to osteochondral tissue and increased glycosaminoglycan and collagen type II (Col II) contents, while reducing collagen type X (Col X) production in the cartilage layer. Col X content was higher for scaffolds with a large pore size, which was accompanied by the enhanced generation of subchondral bone. Thus, chondrocytes seeded in tyramine-treated bilayered scaffolds with small and large pores in the upper and lower parts, respectively, can promote osteochondral regeneration and integration for articular cartilage repair.
UR - http://www.scopus.com/inward/record.url?scp=85060184368&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060184368&partnerID=8YFLogxK
U2 - 10.3390/ijms20020326
DO - 10.3390/ijms20020326
M3 - Article
C2 - 30650528
AN - SCOPUS:85060184368
SN - 1661-6596
VL - 20
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 2
M1 - 326
ER -